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Abstract: The machining characteristics of LM25 AUSiC, composite using end milling was investigated. A comprehensive
mathematical model was developed for correlating the interactive and higher order influences of various process parameters on the
dominant machining criteria, i.e. the tool flank wear phenomena, through response surface methodology, utilizing relevant
experimental data obtained through experimentation. Experimental plan was performed by a standard response surface methodology
design called a central composite design (CCD). The results of analysis of variance (ANOVA) indicate that the proposed
mathematical model can adequately describe the performance within the limits of the studied factors. Optimal combination of these

parameters can be used to achieve the minimum tool flank wear.
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1 Introduction

The performance of machining is measured in terms
of cutting forces, tool wear, power consumption, and
surface finish. In machining, surface finish plays an
important role as it influences the functional properties
of the machined components. There are a number of
factors, such as cutting conditions, tool geometry, work
material characteristics, and cutting fluid, which affect
the tool flank wear and surface finish.

End milling process is classified as material
removal process. This process and its machine tools are
capable of producing complex shapes with the use of
multi tooth cutting tools. In the end milling process, a
multi tooth cutter rotates along various axes with respect
to the workpiece. Wear on the flank of a cutting tool 1s
caused by friction between the newly machined
workpiece surface and the contact area on the tool flank.
Because of the rigidity of the workpiece, the worn area
referred to the flank wear land, must be parallel to the
resultant cutting direction. The width of the wear land is
usually taken as a measure of the amount of wear and
can be readily determined by means of a toolmaker’s
microscope. In the end, excessive flank wear will lead to
poor surface texture, inaccuracy and increasing friction

as the edge shape changes [1].

Metal matrix composites (MMC) are a relatively
new class of materials characterized by lower density
and greater strength and wear resistance than the
conventional materials. Due to their superior strength
and stiffness, MMCs have good potential for application
in the automotive and aerospace industries [2-4]. The
machining of MMCs is very difficult due to the highly
abrasive and intermittent nature of the reinforcements.
Conventional tool materials, such as high-speed steel,
cannot be used for MMCs as the cutting tool undergoes
very rapid wear. Carbides, either plain or coated, sustain
significant levels of tool wear after a very short period of
machining [5].

To study the difficulties in machining of MMCs,
previous investigations on the machinability of MMCs
have covered the effects of machining parameters and
the propertiecs of MMCs on the tool wear and the
mechanism of the tool wear. CHENNAKESAVARAOQO et
al [6] experimented with different cutting tools. They
reported that the crater wear was not appreciable in K10
tools, and it had superior wear resistance and produced
continuous chips. HOCHENG et al [7] studied the effect
of speed, feed, depth of cut, rake angle and cutting fluid
on the chip form, forces, wear and surface
roughness. Tool life, surface quality, and cutting forces
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were studied by CHAMBERS [8]. YUAN and DONG [9]
investigated the effect of reinforcement volume
percentage, cutting angle, feed rate, and speed on the
surface integrity in ultra precision diamond turning of
MMCs. EL-GALLAB and SKLAD [10] used several
tool materials to compare their effectiveness. DAVIM
[11] examined the influence of cutting speed, feed rate,
and cutting time on turning MMCs (A356/20SiC,-T6)
using polycrystalline diamond (PCD) cutting tools based
on the techniques of Taguchi. PALANIKUMAR and
KARTHIKEYAN [12] investigated the factors
influencing the surface roughness on the machining of
AVSIC particulate composites using tungsten carbide
tool inserts (K10). DABADE et al [13] studied the
surface integrity as a function of process parameters and
tool geometry by analyzing cutting forces, surface finish,
and microstructures of the machined surfaces on
AVSiC/10p and Al/SiC/30p composites using cubic
boron nitride (CBN) inserts.

BASHEER et al [14] developed a model to predict
the surface roughness in precise machining of metal
matrix composites using PCD tools with respect to the
size and volume of reinforcement, tool nose radius, feed
rate, and the depth of cut. PENDSE and JOSHI [15]
concluded that the size of reinforcements in the
composite material influenced the roughness of the
machined surfaces significantly when its magnitude was
comparable to that of the feed rate and tool nose radius
employed during the machining of the composite.
PALANIKUMAR and DAVIM [16] made an attempt to
assess the factors influencing tool wear on the machining
of glass fibre-reinforced plastics composites by coated
cement carbide tools using the analysis of variance
(ANOVA). Most of the above studies showed that the
wear characteristics of various tool materials based on
cutting parameters and surface finish during the
machining of aluminium based composites reinforced
with SiC particles were investigated. Only the effects of
cutting parameters like cutting speed, feed rate, and the
depth of cut were examined. The effects of the mass
fraction of silicon carbide particles on tool wear have not
been studied.

The purposes of the present work, therefore, are to:
1) investigate the wear of carbide tools in the machining
of the various mass fraction of SiC, particle-reinforced
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LM25 aluminum alloy composites which were produced
by a stir casting method; 2) develop a mathematical
model for tool flank wear using the spindle speed, feed
rate, depth of cut and various mass fraction of SiC, by
multiple linear regression for analyzing the process
parameters. Furthermore, ANOVA is employed to carry
out the effects of various factors and their interactions on
the tool flank wear.

2 Experimental

In the present experimental study, the material to be
machined was LM25 Al alloy reinforced with SiC,
particles, at a composition of 5%, 10%, 15%, 20% and
25% (mass fraction) and particle size of 25 mm. The
experiments were performed on a vertical milling
machine. The dimensions of the specimens were 100 mm
x 50 mm x 40 mm. The composition of the LM25 Al
alloy specimen is presented in Table 1. The cutting tools
used were flat end uncoated solid carbide cutters, having
diameter of 12 mm, helix angle of 45°, rake angle of 10°
and number of flutes 4. The important factors influencing
the tool flank wear and their levels are presented in
Table 2.

Table 1 Chemical composition of LM25 aluminum alloy (mass
fraction, %)

Si Mg Mn Fe Cu Ni Ti

7 0.33 0.3 0.5 0.1 0.1 0.2

As the range of individual factor was wide, a central
composite rotatable four-factor, five-level factorial
design matrix was selected. The experimental design
matrix (Table 3) consisted of 31 sets of coded conditions
and comprised a full replication four-factor factorial
design of 16 points, 8 star points, and 7 center points.
The upper and lower limits of the parameters were coded
as +2 and -2, respectively. The coded values for
intermediate levels can be calculated by

X=2[2X~(XonaxtXin) }/ (Xmax—Xmin) 6

where X; is the required coded value of a variable X and
X is any value of the variable from Xin t0 Xpax. As
prescribed by the design matrix, machining has been
carried out for a fixed time interval. The flank wear
(VBuax) was measured on a Metzer tool maker’s
Mmicroscope.

Table 2 Experimental parameters and their levels ‘
Level
No. Factor Notation

-2 -1 0 +1 +2
1 Spindle speed/(rmin"") N 2000 2500 3000 3500 4000
2 Feed rate/(mm-r") f 0.02 0.03 0.04 0.05 0.06
3 Depth of eut/mm d 0.5 1 1.5 2 2.5
4 Content of silicon carbide/% S 5 10 15 20 25
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Table 3 Experimental design matrix and results
Experiment Spindle speed Feed rate Depth of cut Content of SiC,  Tool flank
No. X Actual/(rrmin") X, Actal/mmr') X;  Actual/mm X, Actual/% wear, VB
1 -1 2500 -1 0.03 -1 1 -1 10 0.224
2 1 3500 -1 0.03 -1 1 -1 10 0.284
3 -1 2500 1 0.05 -1 1 -1 10 0.258
4 1 3500 1 0.05 -1 1 -1 10 0.291
5 -1 2500 -1 0.03 1 2 -1 10 0.235
6 1 3500 -1 0.03 1 2 -1 10 0.294
7 ~1 2500 1 0.05 1 2 -1 10 0.270
8 1 3500 1 0.05 1 2 -1 10 0.297
9 -1 2500 -1 0.03 -1 1 1 20 0.338
10 1 3500 -1 0.03 -1 1 1 20 0.407
11 -1 2500 1 0.05 -1 1 1 20 0.377
12 1 3500 1 0.05 -1 1 1 20 0422
13 -1 2500 -1 0.03 1 2 1 20 0.358
14 1 3500 -1 0.03 1 2 1 20 0.413
15 -1 2500 1 0.05 1 2 1 20 0.384
16 1 3500 1 0.05 1 2 1 20 0.419
17 -2 2000 0 0.04 0 1.5 0 15 0.262
18 2 4000 0 0.04 0 1.5 0 15 0.361
19 0 3000 -2 0.02 0 1.5 0 15 0.314
20 0 3000 2 0.06 0 1.5 0 15 0.357
21 0 3000 0 0.04 -2 0.5 0 15 0.309
22 0 3000 0 0.04 2 2.5 0 15 0.341
23 0 3000 0 0.04 0 1.5 -2 5 0.211
24 0 3000 0 0.04 0 1.5 2 25 0.443
25 0 3000 0 0.04 0 1.5 0 15 0.322
26 0 3000 0 0.04 0 1.5 0 15 0.328
27 0 3000 0 0.04 0 1.5 0 15 0.319
28 0 3000 0 0.04 0 1.5 0 15 0.326
29 0 3000 0 0.04 0 1.5 0 15 0.323
30 0 3000 0 0.04 0 1.5 0 15 0.327
31 0 3000 0 0.04 0 1.5 0 15 0.329
VBrna=botEb X Zb X +Eb XX (3)

3 Developing empirical relationship

Relationship between flank wear (¥By,,) and end

and for four factors, the selected polynomial can be

expressed as:

milling of LM25 Al alloy reinforced with SiC, particles
is a function of the process parameters such as spindle
speed (N), feed rate (f), depth of cut (d) and content of
silicon carbide (S), which can be expressed as:

VBuax=fiN, f, d, S} 2

The second-order polynomial (regression) equation
used to represent the response surface VB, is given by:

VB a=bo+biN+byftbd+b,S+b 1o NF+bysNa+by JNS+byfd+
BofS+b3udS+by N+byf +bysd+h4sS* (4)

where b, is the average of the responses, and by, b,
by, **+, by, are regression coefficients [17] that depend on
the respective linear, interaction, and squared terms of
factors. The value of the coefficient was calculated using
Minitab Software. The significance of each coefficient
was determined by Student’s f test and p values, which
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are listed in Table 4. The values of p less than 0.05
indicate that the model terms are significant. In this case,
X1, Xo, Xo, Xi2, Xo? and XX, are significant model terms
and X; has less influence on the flank wear. The values
greater than 0.10 indicate that the model terms are not
significant. The final empirical relationship was
constructed using only these coefficients, and the
developed final empirical relationship is given below:

VBumar=—0.2551+0.0002X,+2.4923 X,+0.0404.X;+
0.0084.X,+34.4196.X,%+0.0033.X,>+
0.0001.X,%-0.001.X,.X,-0.3125X,X+
0.0088X,.X,—0.0002.X3X, (5)

Table 4 Estimated regression coefficients for VBp,, (Before
elimination)

Term Coefficient t P
Constant —0.2551 —4.124 <0.001
X 0.0002 6.411 <0.000
X, 2.4923 2.205 <0.042
X3 0.0404 1.880 0.078
X, 0.0084 3.927 <0.001
X’ —0.0000 -2.878 <0.011
Xt 34.4196 3.873 <0.001
X 0.0033 0.919 0.372
X2 0.0001 1.482 0.158
XX, -0.0013 -5.418 <0.000
XX ~0.0000 ~1.631 0.123
XX, 0.0000 1315 0.207
XX -0.3125 -1.315 0.207
XX, 0.0088 0.368 0.718
XX, ~0.0002 -0.473 0.642

5=0.00475290, PRESS=0.00173501; R-Sq=99.65%, R-Sq(pred)=98.34%,
R-Sq(adj)=99.35%

Analysts of variance (ANOVA) technique was used
to check the adequacy of the developed empirical
relationship in Table 5. In this investigation, the desired
level of confidence was considered to be 95%. The
relationship may be considered to be adequate, which
provides that the calculated F value of the model
developed should not exceed the standard tabulated F
value. The standard tabulated F value for 95%
confidence limit is 4.06. From Table 5, the calculated F
value of the model is 2.15 for lack-of-fit is smaller than
the standard value of 95% confidence limit. ’fhus, it is
found that the above model is adequate. The normal
probability plot of residuals for tool flank wear is
presented in Fig. 1. It can be noticed that the residuals
fall on a straight line, which means that the errors are
distributed normally [18] and the regression model is
well fitted with the observed values.

Table 5 Test result of ANOVA

Source of Degree of Sum of Mean
.. sum of F-value p-value
variation  freedom  squares
squares
Regression 14 0.103963 0.007426 328.73 0.000
Linear 4 0.102512 0.000268 11.88 0.000
Square 4 0.000642 0.000160 7.10 0.002
Interaction 6 0.000809 0.000135 5.97 0.002
Residual 16 9000361 0.000023
error
Lack of fit 10 0.000283 0.000028 2.15
Pure error 6 0.000079 0.000013
Total 30 0.104325
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Fig. 1 Normal probability plot of residuals for tool flank wear

The backward elimination process was selected to
reduce the insignificant terms. The resulting ANOVA
table of the reduced quadratic model for the tool flank
wear is presented in Table 6. The reduced model results
reveal that this model is still significant in the status of
the value of ‘Prob.>F" being 0.05. The other important
coefficient R%in the resulting ANOVA table is defined as
the ratio of the explained variation to the total variation
and is a measure of the degree of fit. When R* approaches

Table 6 Estimated regression coefficients for VB, after
backward elimination

Term Coefficient t r
Constant -0.2577 -5.376 <0.000
X 0.0002 6.827 <0.000
X, 2.3189 2.199 <0.038
X, 0.0111 5.451 <0.000
X, 0.0119 58.563 <0.001
X’ -0.0000 -2.997 <0.006
X’ 32.3678 3.511 <0.002
XX, —0.0013 -5.170 <0.000




1572 R. AROKIADASS, et al/Trans. Nonferrous Met. Soc. China 22(2012) 1568—1574

unity, the response model fits the actual data better. The
value of R* for this reduced model is over 99.45%
reasonably close to unity, which is acceptable. The
contour plots and surface plots were drawn for various
combinations. The numbers present in the contour plot
are tool flank wear.

After eliminating the non-significant terms, the final
response equation for tool flank wear is given as follows:
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From Fig. 2, it is clear that the tool flank wear
decreases with the decrease of spindle speed, content of
SiC, and feed rate. At a lower spindle speed, tool wear is
less, which can be attributed to the formation of larger
size unstable built-up-edge (BUE) due to high contact
pressure and friction. The formation of unstable larger
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Fig. 2 Response graphs and contour plots: (a) Contour plot of flank wear vs feed rate, spindle speed; (b) Surface plot of flank wear vs
feed rate, spindle speed; (c) Contour plot of flank wear vs content of SiC,, spindle speed; (d) Surface plot of flank wear vs content of
SiC,, spindle speed; (¢) Contour plot of flank wear vs content of SiCy, feed rate; (f) Surface plot of flank wear vs content of SiC,,
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5 Conclusions

1) An empirical relationship was developed to
predict the tool flank wear of end milling of LM25
AVSiC,, by incorporating process parameters. The
developed relationship can be effectively used to predict
the tool flank wear of carbide end mill cutter at a
confidence level of 95%.

2) From the developed model, the optimal process
parameter combination, i.e. spindie speed of 2034.6084
r/min, feed rate of 0.0214 mm/r, depth of cut of 0.5893
mm, and content of SiC,, of 5% was found out to achieve
the minimum tool flank wear as 0.1102 mm.

3) Spindle speed and content of SiC, were found to
have greater influence on tool flank wear in end milling
of LM25 Al/SiC, MMC, followed by feed rate. Depth of
cut has less influence on tool flank wear.
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