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ABSTRACT 

Bunge, H.J., 1981. Fabric analysis by orientation distribution functions. In: G.S. Lister, 
H.-J. Behr, K. Weber and H.J. Zwart (Editors), The Effect of Deformation on Rocks. 
Tectonophysics, 78 : l-21. 

Crystalline materials (natural or artificial) may consist of several phases (minerals) the 
crystal structures and relative amounts of which will generally be known. In order to fully 
characterize such a material, also the form and spatial distribution of the phases, the grain 
structure, and lattice defects and their distribution must be specified by appropriate 
distribution functions. Among these, the Orientation Distribution Function (texture, 
fabric structure) plays an important role. It can be deduced from experimental pole 
figures by series expansion methods. In textured materials two different symmetries can 
be distinguished, the crystal symmetry and the statistical sample symmetry. Special 
consideration must be given to the inversion centre as an element of either of these sym- 
metries and in Friedels’ law. A complete description of all possible sample symmetries 
can be given in terms of black-white symmetry groups. The determination of the odd 
part of the texture function is strongly related to these groups and the various kinds of 
the inversion centre. Each combination of a certain crystal symmetry group with a certain 
sample symmetry group induces a certain space group in the orientation space, the proper 
consideration of which minimizes the required amount of numerical calculations. The 
texture function (ODF) is the most important factor in the relation between aniso- 
tropic properties of single crystals and the polycrystalline material. Changes of the GDF 
can be used as a sensitive indicator for solid state processes having occurred in the 
material. 

DEFINITION OF THE FABRIC STRUCTURE 

Natural rocks as well as artificial materials, e.g. metals, ceramics and poly- 
mers, may consist of one or more minerals or phases, the crystal structures 
and relative amounts of which will generally be known. This does, however, 
by no means characterize the material sufficiently. Rather it is necessary to 
additionally specify its fabric structure i.e.: 

(1) The spatial distribution of the phases. 
(2) The composition of the phases of individual crystallites. 
(3) Deviations of the crystallites from the ideal crystal structure. 

This is illustrated in Fig. 1. 
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Single phase materials 

In the following we shall only deal with the second feature, i.e. the grain 
structure of a single phase material consisting of crystallites of ideal struc- 
ture. A material of this type is fully specified by the grain boundary network 
and the orientation of the crystallographic axes of all grains, Fig. 2. In order 
to assess the macroscopic properties of such a material it is generally not 
necessary and not even desirable to describe individual grains of the material. 
Besides this, a grain-by-grain description is usually not feasible. Rather, the 
fabric will be described by certain statistical distribution functions e.g.: 

(1) The orientation distribution function. 
(2) The grain size (and its distribution). 
(3) The grain shape (and its distribution). 
(4) The orientation correlation (across the grain boundaries). 

The parameters 2-4 are illustrated in Fig. 3 (Bunge, 1979). There are several 
variants of how to quantitatively define these parameters. 

The orientation distribution function 

Grain size, grain shape and orientation correlation may have considerable 
influence on the properties of the material. In the firesent, we shall, however, 
confine ourselves to the orientation distribution function i.e. the volume 
fraction of crystallites having the orientation g of their crystallographic axes 
with respect to a sample reference system : 

dJ%iW’= f(g) dg (1) 

This volume fraction is indicated in Fig, 4 by the shaded grain cross-sections. 

Fig. 1. Schematic structure of a polycrystalline, multiphase material containing lattice 

defects. 

Fig. 2. A polycrystalline one-phase material is characterized by the orientation of the 
crystal axes of all grains and the grain boundary network. 



Fig. 3. Grain size, grain shape and orientation correlation (Bunge, 1979). 

Fig. 4. The volume fraction dV(g) of crystals having the orientation g within the limits of 

dg. 

Definition of crystal orientation 

The crystallographic orientation of a crystallite in a polycrystalline sample 
is defined by the orientation of a crystal-fixed coordinate system with respect 
to a sample-fixed reference system Fig. 5 (Bunge, 1969). 

In particular, it can be specified in many different ways. In Fig. 6 (Bunge, 
1979) one specific crystal direction [hhl] has been chosen. Its orientation 
with respect to the sample coordinate system may be described by two 
angular coordinates ~$3. The crystal is then left with one degree of freedom 
to rotate about [Ml] which has to be specified by a third parameter y. 
Another frequently used description of the relative orientation of two 
coordinate systems is the one by Eulerian angles shown in Fig. 7. It consists 
of three successive rotations about the crystal axes Z’X’Z’ starting from a 
position with the two coordinate systems parallel. 

The orientation space 

In any case, the full description of the orientation requires the specifica- 
tion of three parameters. The values of these parameters may be represented 

Fig. 5. The sample-fixed reference system KA and the crystal-fixed coordinate system K, 
(Bunge, 1979). RD and TD are rolling direction and transverse direction respectively, in a 
rolled sheet. 
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Fig. 6. The orientation of a crystallite may be specified by the polar coordinates crfl of a 
specific crystal direction [hkl] with respect to the sample coordinate system and the 
angle y of a rotation about [hkl] (Bunge, 1979). 

Fig. 7. The Eulerian angles are defined by three successive rotations through cpt about Z’, 
4 about X and (~2 about Z’, starting from a position with the two coordinate systems 
parallel. 

by a point in a three-dimensional space, the orientation space. In Fig. 8 the 
Eulerian angles have been chosen and have been represented as rectangular 
Cartesian coordinates. Hence, the orientation distribution function is a func- 
tion of three variables which may be represented in the three dimensional 
space of Fig. 8: 

f(g) = f(%GP*) = f(@r) = **. (2) 

DETERMINATION OF THE ORIENTATION DISTRIBUTION FUNCTION 

Individual orientation measurements 

In certain cases it is possible (e.g. by universal stage measurements, by 
Laue-photographs, by electron diffraction) to individually measure the 
orientations.of all crystallites of a sample. Each crystallite is then represented 
by a point in the orientation space. An example is shown in Fig. 9 according 
to Wenk and Wilde (1972). 

Accumulating measurements (pole figures) 

Frequently, however, the measurement of a large number of individual 
crystallites will be too time-consuming. In these cases an accumulating 
method can be used. In Fig. 10 the principles of X-ray diffraction in a poly- 
crystalline sample are shown. After certain corrections (e.g. back-ground 
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Fig. 8. An orientation g of a crystallite may be specified by a point in a three-dimensional 
space, the orientation space. 

Fig. 9. The orientations of individual crystallites of a Yule marble sample represented in 
the space of the Eulerian angles *-a according to Wenk and Wilde (1972). (The defini- 
tion of the Eulerian angles \k-@ is slightly different from that used in Fig. 7). 

scattering, absorption, defocalization) the measured intensity is proportional 
to the volume fraction of crystals in reflection position. This method accu- 
mulates the reflected intensities of all crystals which have a particular [Ml- 
direction in a specific orientation with respect to the sample reference 
system Fig. lla. By rotating the sample through two independent angles, all 
possible positions of [hkl] with respect to the sample coordinate system can 
be registered. The so obtained intensity distribution function is the well- 
known (M&fabric diagram (Sander, 1950) or (Ml)-pole figure (Wassermann 
and Grewen, 1962) Fig. lib *. As can be seen in Fig. 11, the pole figure is 
not changed if all crystals are arbitrarily rotated about the [hhl]direction. 

* Note that pole figures are usually characterized by the Miller indices of the reflecting 
lattice plane (hkl) whereas the definition of the orientation described in Fig. 6 refers to 
a specific crystal direction [h’k’l’], i.e. the normal direction to the plane (hkl). 



Fig. 10. Crystallites, the direction [Ml] of which falls into the solid angle element df2, 
are in reflecting position to the incident X-ray beam, The intensity of the reflected beam 
is proportional to the volume fraction of these crystals. 

The pole figure is thus an integral over the third orientation parameter: 

It does not contain the full information about the orientation distribution of 
the crystallites. The missing information may be provided by reflecting the 
X-rays from other lattice planes (h’k’l’). This gives rise to similar relations as 
eq. 3 with other orientation parameters. 

Solutions of the fundamental relation 

The fundamental problem in texture analysis is to solve the integral equa- 
tion (eq. 3) for the function f(c&) if several different pole figures i.e. two- 

TD 
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Fig. 11. The orientation of the direction [hkl] of an individual crystallite with respect 
to the sample reference system and the pole distribution function, i.e. (hkl) fabric dia- 
gram or (hkl) pole figure (Bunge, 1979). 



dimensional projections of it are known. Several methods of how to achieve 
the solution have been proposed. The first idea is to replace the integral by 
a sum and thus to obtain a system of linear equations instead of a system of 
integral equations (Williams, 1968). This method has been designated as 
vector method (Ruer and Baro, 1977). Recently an integral inversion formula 
has been proposed by Matthies (1979). 

A fourth method is the series expansion method which has found the 
widest use thus far (Bunge, 1965, 1969; Roe, 1965). In the following we 
shall deal with this method only. 

The series expansion method 

A solution to the above mentioned problem may be achieved by devel- 
oping both functions the distribution function f(&) and the pole figures 
Phkl(&) into series whereby the function f will be expressed in Eulerian 

angles f(rp&Q: 

Phhl(aF) = fi it F;(hkE) k;(c$) 
I=0 n=--I (5) 

where k;(cufl) are spherical harmonics and ~“(~,$x&) are generalized 
spherical harmonics. These are mathematically known functions the proper- 
ties of which need not be discussed here. Inserting eqs. 4 and 5 into the fun- 
damental relation, eq. 3, yields a relation between the coefficients F; of the 
experimental functions and the ones Cy”” of function which is to be deter- 
mined: 

F;(hkl) = __ ,f:, < Cy”k;m(hkZ) (6) 
m I 

If the F; are known for sufficiently many pole figures (hkl) the system of 
linear equations, eq. 6, can be solved for the coefficients Cf”“. The coeffi- 
cients fl(hkl) can be obtained from the experimentally measured pole 
figures Phkl(~fl) by the inversion of eq. 5 which reads: 

F;(hkl) = j-P,&~fl) k;“(&) dS-2 (7) 

i.e. an integral taken over the whole pole sphere of the measured function 
multiplied by the corresponding spherical harmonic. Hence, when the coef- 
ficients Fy(hkl) have been calculated according to eq. 7 then eq. 6 can be 
solved for the Ci”” and finally the orientation distribution function ~(I&JJ~) 
can be calculated for any required values of (p14(p2 by summing up eq. 4. 
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Representation of the results 

Usually the function f(pI&pz) will be needed in the complete range of 
orientation parameters (pI@p2. The calculations will thus be carried out in 
steps AplA@A(p2 (say 5” each). The result may be interpolated by equi- 
density lines as is shown for pl = const. in Fig. 12. This may be done for all 
sections in steps of Ap, to span the whole range of the orientation space, 
Fig. 13 (Bunge et al., 1974). The sections cpl = const. may be stacked one 
upon the other, connecting the level lines to level surfaces as is shown in Fig. 
14 (only one of the level surfaces is shown). The n-th level surface thus con- 
tains the points I~,c& such that: 

f(w#v?) = ‘2 fr 
where f, is the orientation density of the random distribution. 

(8) 

THE INFLUENCE OF SYMMETRIES 

Cry.5 tal symmetries 

The formulae eqs. 4-7 are valid for triclinic crystals. If the crystal sym- 
metry is higher, then special symmetry-adapted functions can be used 
(Bunge, 1969) instead of the functions Z’Yn and hy in eqs. 4 and 5. This 
reduces the number of terms in eq. 6, i.e. the number of unknown coef- 
ficients which are to be determined by solving this system of equations. The 
number of unknowns, in turn, determines the necessary number of equa- 
tions and hence the number of different pole figures needed in order to 
uniquely solve eq. 6. These numbers (as a function of the degree I) are 
shown in Fig. 15 for the various crystal symmetries (Bunge, 1969). The 
lower the symmetry and the higher the required degree 1 of the series expan- 

Fig. 12. The function f(q~~&~~) has been calculated in steps A(plA$. The so obtained 
functional values have been linearly interpolated to find the intersection of a certain level 
line with the coordinate lines. 



9 

Fig. 13. The sections cpr = n . 5’ of the texture of a cold-rolled and recrystallized iron 
sheet (Bunge et al., 1974). 

Degree I 

Fig. 14. The level lines f = 4 . f, of the texture of Fig. 13 have been stacked three-dimen- 
sionally and have been connected to the level surface (Bunge et al., 1974). 

Fig. 15. The number of linearly independent spherical harmonics of order I for the 
various crystal symmetries (Bunge, 1969). 



sion the higher is the number of pole figures needed to determine the orien- 
tation distribution function. 

The ten tre of inversion 

Special consideration must be given to the centre of inversion, If the 
crystals belong to a noncentrosymmetrie group then they may exist in a 
right- and left-handed form (Fig. 16) and these may be present in a poly- 
crystalline sample with a different volume fraction MR and ML (Fig. 17). 
Hence, the sample may be considered as a two-phase material consisting 
of a right-handed and a left-handed phase. The two phases may have 
independent orientation distribution functions p(g) and fL(g) which may be 
expressed by series expansions according to eq. 4 with coefficients (CR)?” 
and (CL)rn. In a polycrystal diffraction experiment according to Fig. 10 
corresponding crystal directions of right-handed and left-handed crystals 
cannot be distinguished, The corresponding pole figures are always super- 
posed. Hence, the distribution functions fR(g) and’ fL(g) cannot be deter- 
mined separately. Rather, a mixed texture function f(g) will be obtained 
with the coefficients: 

C;nn = M”(CR);1” + ML(CL);n n for 1 even (9) 
@l = &P(P);“” - ML(CL);n n for 1 odd (IO) 

A centrosymmetric crystal may be considered as right-handed and left- 
handed at the same time. Hence, the volume fractions hfR and ML must 
be equal and the orientation distribution of the right-handed and left- 

Fig. 16. Right- and left-handed crystal forms. 

Fig. 17. A polycrystalline sample of non-centrosymmetric crystals consisting of right- and 
left-handed crystal forms. 
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handed crystals and hence the coefficients (CR)f”” and (CL)y” must be the 
same. Thus, it follows for centrosymmetric crystals: 

,$yn = (CR)?” = (CL)y” for 1 even (11) 
Tr 
Cf”” =o for 1 odd (12) 

This means, the coefficients C;“” of the experimentally determined texture 
are equal with the true ones (CR)?” and (CL)f”” (in the right- or left-handed 
description) only for the even values of 1 whereas the true coefficients 

(CR)Y or (CL)?” for odd values of 1 cannot be determined experimentally 
from pole figures. 

In non-centrosymmetric crystals a centre of inversion is induced artificially 
by X-ray diffraction (Friedels’ law) which makes the direction [hkl] indistin- --- 
guishable of [h k l]. Hence, the (hkl) pole figure is always superposed with --_ 
the (h k I) pole figure, This may be considered as if to the right-handed phase 
a hypothetical left-handed one is being added with the same volume fraction 
and the same texture. Hence, even if only right-handed crystals were present 
eqs. 11 and 12 are valid. This means, the coefficients of odd order of the 
texture function cannot be obtained directly from polycrystal diffraction 
experiments (unless anomalous scattering is used). 

The odd part of the texture function 

Because of eqs. 11 and 12 it is necessary to consider the 
odd 1 in eq. 4 separately, thus, splitting the distribution 
even and odd part: 

f(g) = fe”Yg) + fYg> 2 0 

terms of even and 
functions into an 

(13) 

According to the definition eq. 1, f(g) is the volume fraction of crystals in 
the orientation g. This volume fraction cannot be negative. It can, however, 
be zero in a certain region 2’ of the g-space. This region can be concluded 
directly from the zero-regions of the pole figures (an orientation g, the (hkl) 
pole of which falls into the zero-region of the (hkl) pole figure must belong 
to the zero-region in the g-space). Hence, it is: 

f”dQ,> = -f”“““(g), in 2’ (14) 

where f”“““(g) has been calculated according to the method mentioned above. 
If, thus, fodd(g) is known in the region 2’ it can there be approximated by a 
series (eq. 4) with odd terms only according to the condition (Bunge and 
Esling, 1979): 

f”dqg> - 5 5 5 C;“TP”(g)]* dg =Min (15) 
1=1(2) m=-I n=--l 



The so obtained coefficients C;,*” of odd order 1 define an approximation to 
the function f”““(g) in the uh 1 ’ o e range of g. In the case that there is a zero- 
region in the function f(g), it is thus possible to determine also the odd part 
of the orientation distribution function from pole figure measurements. 

It is to be mentioned, that the restrictions concerning the odd part of the 
orientation distribution function are due to polycrystal measurements. They 
are thus inherent in all methods of solving the fundamental relation eq. 3. 
But they do not occur with individual orientation measurements such as 
were shown in Fig. 9. The interpolation of the point distribution Fig. 9 by 
a continuous distribution function (Bunge, 1969) thus allows to determine 
the odd coefficients in a more straightforward way. 

The statistical sample symmetry 

Besides the crystal symmetry, there may be another kind of symmetry in 
polycrystalline samples, namely the sample symmetry (cf. Weissenberg, 
1922; Shubnikov, 1958; Paterson and Weiss, 1961). It relates crystallo- 
graphically well distinguished crystal orientations with one another in such 
a way that these orientations occur with equal volume fraction in the sample. 
In Fig. 18 for example two different crystal orientations are shown which 
are related to one another by a two-fold axis parallel to the rolling direction 
of a metal sheet. If all crystal orientations bearing this relationship occur 
with equal volume fractions then the sample is said to exhibit a two-fold axis 
as an element of the sample symmetry (as is easily seen in Fig. 18 this axis 
is not an element of the crystal symmetry). The sample symmetry reduces 
the number of different values that can be taken on by the index IZ in a 
similar way as the crystal symmetry reduces the number of values which the 
index m may take on (see Fig. 15). 

Again special consideration must be given to the inversion centre. We con- 
sider non-centrosymmetric crystals. The most obvious way of achieving a 
centrosymmetric sample is to add a left-handed crystal in the centrosym- 
metric position to a right-handed one and vice-versa as was shown in Fig. 16. 

If the sample direction y contains the direction [hkl] (of a right-handed 
crystal) then the sample direction -y contains also the direction [hhl] 
(although of a left-handed crystal). Hence, the sample directions +y and ---y 
are indistinguishable from the point of view of crystallographic directions 
falling into them. 

There is, however, still another possibility of achieving a centrosymmetric 
sample with only right-handed (or only left-handed) crystals present in the 
sample. To a crystal having its [hkl]-direction parallel to the sample direc- 
tion y, we add another one (of the same form) having its [hhZ]-direction 
parallel to T. If this relation holds for all sample directions y and all crystal 
directions [hhl] then the sample direction -y is indistinguishable of the 
sample direction +y, the sample thus being centrosymmetric. This is, how- 
ever, a different (and more complex) kind of centrosymmetry compared 
with the first one. 
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Black-white point group 

If we designate the [hkl]-direction of a right-handed crystal by a black 
point in the stereographic projection and the corresponding [hkf] -direction 
of a left-handed crystal by a white point then the following four symmetries 
shown in Fig. 19 are possible. Rotation axes as shown in Fig. 18 transfer 
white points into white ones and black points into black ones. Hence, the 
sample symmetry is to be described by black-white point groups rather than 
by the ordinary ones (Shubnikov and Belov, 1964). 

Symmetries in the Euler space 

Because of the crystal symmetry as well as the sample symmetry, points 
in the orientation space with different Eulerian angles will have the same 
functional value of the orientation distribution function Fig. 20. Since the 
Eulerian angles are periodical variables the orientation distribution function 
is a three-dimensionally periodical function. If it exhibits additional sym- 
metries such as shown in Fig. 20 this will induce a certain space group in 
the Euler space and possibly reduce the unit cell and asymmetric unit as is 
shown in Fig. 21 for cubic crystal symmetry and orthorhombic sample 
symmetry and in Fig. 22 (Baker, 1970) for trigonal crystal and mono- 
clinic sample symmetry. The appropriate consideration of these space groups 
may considerably reduce the amount of computational work needed when 
calculating the orientation distribution function. 

-I 
1 

upper 

n hemisphere n 7 

Fig. 18. A two-fold axis parallel to the sample direction RD (rolling direction) transfers 
any crystal orientation into another one which occurs with equal volume fraction in the 
sample. TD = transverse direction. 

Fig. 19. Four possible symmetries among right-handed (black) and left-handed (white) 
crystals. 
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Fig. 20. Orientations related by the sample symmetry and the crystal symmetry 

Fig. 21. Space group P$$$ in the Euler space corresponding to cubic crystal symmetry 
and orthorhombic sample symmetry. 

EVALUATION OF THE RESULTS 

The method described above answers the question which volume fraction 
of the sample has a crystallographic orientation g described by the Eulerian 
angles rp,&,. The result is contained in the distribution chart Fig. 13 and 
may be read from it for any desired crystal orientation. The Eulerian angles 

Fig. 22. Space group P$ z 8 in the Euler space corresponding to trigonal crystal symmetry 
and monoclinic sample symmetry (Baker, 1970). 
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as orientation coordinates are convenient for the mathematical calculations. 
In general, however, the crystallographer is more familiar with describing 
orientations by poles in a stereographic projection whereby the plane of 
projection may either be fixed to the sample reference system (pole-chart 
or pole figure) or to the crystal reference system (axis chart or inverse pole 
figure). Hence, a transformation from Eulerian angles into these better 
known orientation parameters will be disirable. It can easily be achieved 
from the definition of Eulerian angles by three successive rotations about 
fixed axes Fig. 23. These rotations may easily be carried out by the well- 
known “rolling” operation in the stereographic projection. In Fig. 24 the 
crystallographic directions X’ = [ 1001, Y’ = [OlO], and 2’ = [OOl] are shown 
in a projection fixed to the sample reference system (rolling plane of sheet). 
Fig. 25 gives the inverse representation, namely the sample reference axes 
X = RD, Y = TD, 2 = ND projected into the crystal (001)plane. From these 
reference points the position of any other crystal direction (in Fig. 24) or 
any other sample direction (in Fig. 25) can easily be constructed by well- 
known methods. The coordinate transformation from Eulerian angles to 

Fig. 23. The Eulerian angles are defined by three successive rotations: (1) about the crystal 
Z’-axis through cpl; (2) about the crystal X’-axis through $; and (3) about the crystal 
Z’-axis through cpz. 
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Fig, 24. The positions of the crystal reference directions X’ = [loo}, Y’ = [ OlO], Z’ = 
[ 0011 in a sample-fixed stereographic projection. 

Fig. 25. The positions of the sample reference directions X = RD, Y = TD, Z = ND in 
a crystal-fixed stereographic projection. 

poles can even be more facilita~d by using prefabricated charts showing the 
low-index orientations of the representation Fig. 25 in the Euler space. 
Charts of this type are available thus far for cubic (Davies et al., 1971a; 
Jura et al., 1976) and hexagonal (Davies et al., 1971b) crystal symmetry. 
These charts Fig. 26 can be put immediately on top of the distribution 
charts Fig. 12 or 13 and thus the corresponding orientation can be directly 
read off. 

0 l0 20 30 &Of,50 60 70 80 90 0 

001 g t&J1 I2101 t3zoi tm l230ttliol t&l lOi 

6 LOllI = = - = = - = 

50 
hill f2ilt t3?2t tlilf t2~3t~~~~~3t tOilt 

90 
tloa g r3q I2Qu ppl iljpl rapI1~2l I?ql IOOU 

Fig. 26. Low-index orientations RD // [hkE ] and ND // [uvw] according to Fig. 25 for 
cubic crystal symmetry (Jura et al., 1976). 
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Accuracy and limits of the method 

The principle limit of accuracy of the method is given by the statistical 
nature of grains in a polycrystalline sample. This is to be seen in Fig. 9. The 
orientation density may be obtained by partitioning the whole orienta- 
tion space into small boxes and counting the number N of points in them. 
The statistical error will thus be 4N. Hence, the relative error of the orien- 
tation density brought about per definition by the statistical nature will be 

1IJN. 
A step scanning error will arise from not measuring the pole figure as a 

continuous function. Usually a step scan of 5” X 5” is being used. Hence, the 
resolving power of the method will not be better than 5”. Consequently, the 
steps Aq,A$Aqz for the calculation of the function f(p,&) in Figs. 12-14 
have been chosen as 5” too. 

From eq. 6 it follows that the coefficients CT” can no longer be uniquely 
determined if the number of pole figures (hhl) is smaller than the number 
of unknowns of this system of equations. As Fig. 15 shows, the number of 
unknowns increases with increasing degree 1. Hence, there will be an upper 
limit Z,,, beyond which there is no unique solution for the function f(g) 
with a given number of pole figures. This ambiguity is independent of the 
specific method of solving the equation (eq. 3). 

A specific ambiguity is introduced if the odd part of the texture function 
is not determined (as was shown, the determination of the odd part needs 
special considerations). Because of this ambiguity one cannot distinguish 
between crystal directions [ hhl] and [ EE T] falling into any sample direction. 
Hence, all sample symmetries are being interpreted as “grey” symmetries 
according to Fig. 19. 

APPLICATIONS OF THE ORIENTATION DISTRIBUTION FUNCTION 

Mean values of physical properties 

One purpose for which the orientation distribution function is needed is 
the calculation of mean values of anisotropic physical properties. Young’s 
modulus measured in a crystal direction [hhl] (see Fig. 27) is a function 
of this direction, E(hkZ), which is shown for example in Fig. 28 for iron 
(Schmid and Boas, 1950). The Young’s modulus of a polycrystalline sample 
in the sample direction y (Fig. 29; Bunge, 1979) may be obtained as the 
mean value over all crystals having their [hkl] directions parallel to y multi- 
plied by the volume fraction A(hkl, y) of these crystals. Thus, it is (Bunge, 
1969) : 

J%Y) = j-E(hh0 * A(hhl, y) dS2 (16) 



Fig. 27. Measuring Young’s modulus in the crystal direction [1zk1] 

Fig. 28. Young’s modulus as a function of [hkl] for iron (Schmid and Boas, 1950). 

The volume fraction A(hhl, y) is related to the orientation distribution func- 
tion by: 

A&h/, Y> = s fGwih) dy (17) 
[hkll /I> 

where the integral is to be taken over all those orientations the [hhll-direc- 
tion of which is parallel to y. Calculations of this type are needed in order to 

Fig. 29. A crystal in an orientation having the [hkl] direction parallel to the sample direc- 
tion y (Bunge, 1979). 
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rationalize anisotropic wave velocity in natural rocks (e.g. Kern and Fak- 
himi, 1975). 

Comparison with model functions 

The orientation distribution function f(g) of a polycrystalline material 
may depend on a great number of influences having acted upon that sample 
during all of its history. In fact, it may depend on all processes capable of 
changing crystal orientation, e.g. plastic deformation, phase change, or 
recrystallization. Hence, the texture may be used as a sensitive indicator by 
which to follow these processes. In rock deformation it should be possible 
for instance, to use the texture as an indicator for the deformational history 
if only one had some model textures of known history. Such model textures 
may be obtained by experimental rock deformation (Siemes, 1977; Kern, 
1979) or theoretically by calculating orientation changes after certain 
deformations according to some theories, e.g. the Taylor theory (Taylor, 
1938). The comparison of the investigated texture with the model texture 
can, of course, be carried out in the pole figures (Lister, 1974). It will, 
however, be much more effective if the corresponding functions f(g) can be 
compared because those functions are much more detailed and the com- 
parison is therefore much more conclusive. Figure 30 shows the comparison 
of the experimental texture of a cold-rolled copper sheet with the theoretical 
texture calculated with the assumptions of the Taylor theory on the basis of 
(111) (110) glide (Bunge and Leffers, 1971). 

- 
h 

Fig. 30. Experimental texture of 90% cold rolled copper compared with the one cal- 
culated after the Taylor theory (Bunge and Leffers, 1971). 
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