

Experience Exchange · ・经验交流

厚大断面大型球铁件磨盘的生产

陈冰廷 贾秀梅

(莱芜钢铁集团机械制造有限公司,山东 莱芜 271104))

Production of Large Nodular Iron Refiner Disc Casting with Heavy Section

CHEN Bing-ting, JIA Xiu-mei

(Laiwu Iron & Steel Group Machinery Manufacture Co., Ltd., Laiwu 271104, China)

中图分类号:TG255 文献标识码:B 文章编号:1000-8365(2008)06-0830-02

铸件结构及生产技术难题分析

2006年3月莱钢机制公司制作一重型机械上的 重要部件——磨盘,用于出口。该件材质为 QT400-15,形状为台体,尺寸结构见图 1,净重12 215 kg,毛重 16 800 kg,对表面质量要求较高。

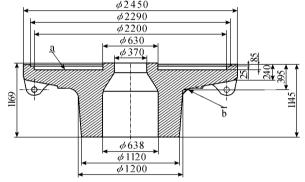


图 1 磨盘简图

该件为厚大断面的大型球墨铸铁件,生产面临 许多困难:①毛重达16.8 t,而公司铸铁车间使用 2 座7 t/h的冲天炉熔炼,一次性最多提供 6 t 铁液,因 此首先要解决一次性的提供足够的铁液进行球化的 问题。②该件最大热节超过 460 mm,在1 169 mm的 整个高度上都为厚大断面,因此应采取措施保证铁

液补缩通道的畅通,确保厚大断面(特别是最大热节 处)无缩孔和缩松等铸造缺陷。③凝固时易产生石 墨飘浮,在铸件上表面容易产生浮渣和夹杂缺陷。 ④由于铸件表面质量要求较高,对铸造用砂提出了 更高的要求。

2 生产过程

2.1 铁液熔炼与处理

(1) 采用炼钢工部设备熔制铁液

公司炼钢部拥有 2 部 30 t EBT 电弧炉,通过电弧 炉-LF 精炼炉-VD 精炼炉的工艺路线,可以一次性提 供多达 40 t 的优质铁液。针对铸铁车间不能一次性 的提供足够的铁液进行球化的问题,通过电弧炉-LF 精炼炉-VD 精炼炉的工艺路线,获得 20 t 出炉温度 1 550 ℃的优质铁液。

球化剂选用某公司生产的钇基重稀土复合球化 剂,孕育剂采用 75Si-Fe。

(2) 化学成分控制

为获得高韧性铁素体球铁,将锰量控制在 0.3% 以下。由于采用电弧炉-LF 精炼炉-VD 精炼炉的工艺 路线熔炼,将原铁液硫量控制在 0.015%以下,综合考 虑,化学成分的控制范围如表 1。

表 1 化学成分 w(%)

	С	Si	Mn	S	Р	RE残	Mg ₈
原铁液	3.5~3.8	0.9~1.1	<0.3	<0.015	<0.05		
铸件	3.4~3.7	2.2~2.5	<0.3	<0.010	<0.05	0.02~0.05	0.035~0.07

2.2 工艺设计

(1) 分型面

选择 a 面作为分型面,见图 2。

(2) 上表面加工余量

上表面加工余量定为 60 mm。

(3) 浇注系统

为方便补缩,采取顶注,并采用开放式浇注系统,其 浇道截面比为直浇道:横浇道:内浇道=1.0:1.2:1.6, 具体尺寸为: 2 道直浇道, 截面尺寸 ø90 mm× 600 mm, 总截面积 12 720 mm²; 横浇道 2 道, 截面尺

寸 74/94 mm×90 mm,总截面积 15 120 mm²:内浇道 8 道,截面尺寸 127 mm×20 mm,总截面积 20 340 mm²。

采用开放式浇注系统,浇注时金属液呈重力流状 态,内浇道处的流速低,冲击力小,充型平稳,金属氧化 程度低:采取顶注方式,可有效的对铸件进行补缩,也 避免了对砂型的冲刷。内浇道采用扁平形式,防止了 凝固过程中抽缩现象的发生。浇注系统简图如图 3。

(4) 冒口

使用绘图软件,采用作图法在工艺图上将热节圆直 接绘出,得出热节圆的直径 T 约为 ø460 mm,见图 4。

blishing House. All rights reserved. http://www.cnki.net

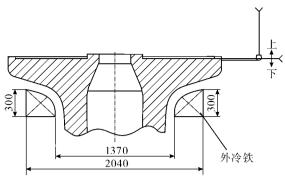


图 2 分型面及外冷铁尺寸简图

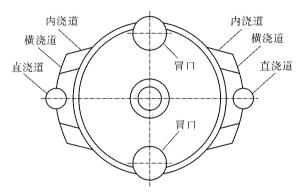


图 3 浇冒口系统设置简图

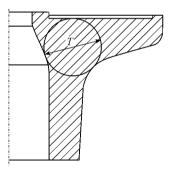
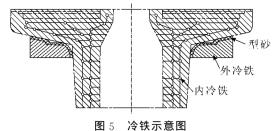


图 4 热节圆


根据球墨铸铁明冒口计算公式[1]: $D=(1.2\sim2.0)T$, $H=(1.2\sim2.5)D$,由于采用保温冒口,确定冒口直径 $D=1.2T\approx560$ mm,冒口高 $H=1.5D=1.5\times560$ mm=840 mm。

根据球墨铸铁明冒口双面补缩的补缩距离计算公式^[1]:L=3T+3T,计算得 L=2~760~mm,铸件上冒口需要补缩的距离为 $490~\text{mm}\times2\times3$. $14\approx3~100~\text{mm}$,故最终选用 2 个保温冒口,尺寸参数为 $\emptyset560~\text{mm}\times840~\text{mm}$ 。

(5) 内冷铁

内冷铁的直径一般为热节圆直径的 $1/4\sim1/3$,因该处热节圆大,如果使用大直径的内冷铁,则内冷铁会因不融于铸件而使得铸件强度降低。为此设计了专用的内冷铁,全部使用 $\emptyset20~mm$ 的无锈蚀圆钢焊接而成,见图 5。

使用该内冷铁,减小了热节的影响,不但有效的消除了该处的缩孔和缩松缺陷,而且内冷铁与铸件融于

B 0 /4 1/

一体,使得铸件强度增强。

(6) 外冷铁

由于对铸件的 b 面质量要求高,而且 b 面处于厚大断面的下面,因此对该处使用了 6 块外冷铁,专门制作,尺寸见图 2。外冷铁与铸件之间用 100~mm 的型砂隔开,安放位置见图 5。

2.3 型砂

由于铸铁车间现有的砂处理设备陈旧,混制的型砂不能满足要求,为使磨盘表面质量达到设计要求,我们采取了加大型砂中新砂比例的措施,提高了型砂的质量,也提高了磨盘的表面质量。

2.4 浇注

将熔炼好的优质铁液转运到铸铁车间,此时温度高于 1450 °C。待铁液温度降到 $1430\sim1450$ °C时,在两个 10 t 铁液浇包内同时进行球化处理,并进行多次孕育处理;浇三角试片进行断口检验,待判断球化合格后浇注单铸试块。当温度降到 $1310\sim1330$ °C的浇注温度时,两包合浇。浇注过程本着先缓后快再缓的原则进行,一次浇注完成后视冒口凝固情况点浇冒口两次。

2.5 清理

浇注完成后,保温 120 h,然后打箱进行清理。

3 生产结果

采取以上措施生产的球铁磨盘铸件,表面和内在 质量均达到了设计要求,表 2 是部分试块的检测结果。

表 2 部分试块检测结果

编号	类别	球化率 级别	铁素体 含量(%)	石墨 大小/级	$\sigma_{\rm b}/{ m MPa}$	8(%)	
盘-1-1	单铸	$2\sim3$	95	6	480	22	
	附铸	3	90	5	425	18	
盘-2-1	单铸	2	90	6	490	23	
	附铸	3	90	5	430	17	
盘-3-2	单铸	$2\sim3$	95	6	485	20	
	附铸	3	90	5	410	18	

参考文献

[1] 施廷藻,王玉玮.铸造实用手册[M].沈阳:东北工学院出版社,1988.

收稿日期:2007-12-31; 修订日期:2008-03-31

作者简介:陈冰廷(1975-),山东高密人,工程师.从事铸造工艺和技术 管理