纤维横向尺寸 SEM 图像分析技术

刘千钧^{1,2} 詹怀宇² 王习文² 伍 红² (1.广东工业大学实验研究中心,广州,510090; 2.华南理工大学制浆造纸工程国家重点实验室,广州,510640)

摘 要:本文简要介绍了用 SEM 图像分析评价纤维横向尺寸的技术,并分析了产生误差的主要因素。 关键词:SEM 图像分析;纤维横向尺寸:纤维性能

图像分析技术近 20 年来在造纸中得到了广泛的应用,可用于纸张中不同纤维的含量、纤维中的灰分、浆中油墨离子含量等的分析。扫描电子显微镜(SEM)在造纸工业中则主要用来观察纤维在不同处理过程中的变化。随着图像分析技术的日益推广,SEM 的应用范围也越来越广,目前 SEM 已经可以用来分析纤维的横向尺寸。

纤维的尺寸特征特别是纤维的横向尺寸可以用 来评价纸浆和成纸的性能等。纤维的横向尺寸包括 纤维细胞壁厚、细胞截面积、细胞腔外径以及纤维的 弯曲度等。与传统的通过加拿大游离度和纤维长度 和宽度等参数来评价浆的横向尺寸相比,图像分析 可以较好地评价浆料中的细小纤维的含量,而细小 纤维达到合适的含量时,成纸会有很好的性能。

目前国内还很少用**这种**研究方法来研究纤维的 横向尺寸。本文简要介绍此项分析技术。

1 纤维显微镜图像分析的发展

1.1 光学显微镜分析

Kibblewhite 和 Bailey^[1]把脱水后的纤维经溶剂交换和干燥处理后,进行单一化处理,然后再用树脂包埋。这样便制得了一个纤维样,接下来可以用薄片切片机切片。切片通过光学显微镜的分析,可以得到纤维的横截面尺寸。但是光学显微镜的分辨率有限,而且景深也有限。同时由于纤维和树脂有不同的界面折射角,会对图像产生一定的影响。

1.2 CLSM 图像分析

Jang 等用共焦激光扫描显微镜(Confocal Laser Scanning Microscope)对纤维的横截面进行了图像分析^[2]。这一方法有以下几个优点:样品的准备时间短;可以得到不受上下激光干扰的一个焦平面上的清晰图像;除做纤维的横截面分析外,还可以做其他

Paper Science & Technology 2003 Vol. 22 No. 5

分析(因为样品没有和树脂包埋,因而纤维的形态可以变化)。

但是此方法也有很大的缺点,即只能分析单根 纤维,而没法对大量的纤维进行分析。

1.3 SEM 图像分析

与光学显微镜和 CLSM 相比, SEM 图像分析有较高的分辨率和景深。同时,如果采用背散射模式, SEM 产生的图像强度与样本的原子质量有关。由于环氧树脂及细胞壁的原子量有很大的差别,因此可以将 SEM 应用于纤维横向尺寸分析^[3]。这种方法对分丝帚化的纤维和未分丝帚化的纤维同样适用。

2 SEM 图像分析

SEM 图像分析分为制样(包括纤维的处理、包埋、切片)、电镜扫描和图像分析四个步骤。目前,图像分析已经能够由电脑来完成。所以我们需要作的就是前面三个步骤的工作。

2.1 制样

要进行分析的纤维首先要用 Bauer McNett 纤维筛分仪进行筛分, 收集留在 48 目上的纤维, 这一目数的纤维有较好的代表性, 然后再对这些纤维用500-700rpm 转速离解。

离解好的纤维用图 1 所示的设备进行纤维的单一化处理,该设备通过真空分支完成过滤,设备中的平行铜薄片使纤维分离成单根纤维。

将悬浮液倒入设备中,之后不停地搅拌以防止纤维沉降,并不断加水,直到所有的纤维都进入到铜片之间为止。单一化的纤维被铜片下面的高目数细筛所收集,这时形成了纤维束。

然后将纤维束冷冻干燥,使纤维与纤维之间得 到更好的分离。干燥好的纤维用塑料包好裹紧,放 人塑料容器中,于105℃烘1h,以除去冷冻干燥中残 留的少量水。

干燥后的样品抽真空 15min,以除去孔隙中的 空气,然后在 20Kpa 的压力下用环氧树脂包埋。包 埋好的样品在室温下处理 24h 后,切片,用 320, 1200,2400 和 4000 粒度的砂纸打磨。用 3 μm 和 1μm 粒度的砂布进行表面抛光。最近有人尝试首 先用 320 粒度的砂纸进行抛光,然后再用 9μm 和 1μm 粒度的砂布进行处理,这样可以大大提高抛光 的速度。

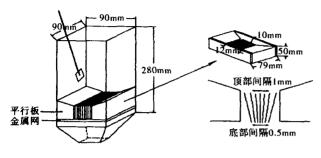


图 1 纤维单一化设备

2.2 电镜扫描

SEM 所得到的显微镜图像是 256 灰度像。在 灰图中不同类型的纤维横截面有较大差别。可以观 察到纤维壁的纹孔及不均匀分布,细小纤维和极小 的颗粒也清晰可见。

扫描灰图经初始化(选择有效的图像部位),适 当处理后得到二元图像。此二元图像经人工编辑除 去图像中不连续的纹孔、分离相互接触的纤维、除去 未离解纤维的图像后得到了分丝帚化纤维截面的分 离图像,即可用于评价纤维的横向尺寸。

2.3 图像分析

对 SEM 图像进行分析可以得到纤维细胞壁厚 度、细胞截面积、纤维的弯曲度等重要参数。这里介 绍一下,纤维细胞壁厚度的计算方法——欧几里得 距离算法。

纤维细胞壁厚度等于纤维细胞面积除以细胞壁 中线周长。细胞壁中线周长可以用欧几里得算法积 分算得。这种方法得到的纤维细胞壁厚度和壁腔比 是比较准确的。有了纤维细胞壁厚度和周长,便可 以求得壁腔比。在评价纤维的平整性和柔韧性时, 纤维细长,平整性好,是造纸的理想原料。而纤维的 平整性对成纸的匀度有重要的影响,一般来说早材 比晚材的壁腔比小,纤维具有较好的平整性。

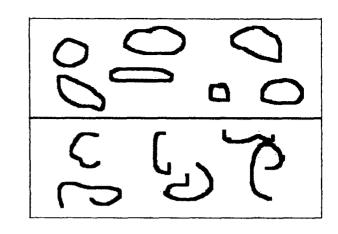
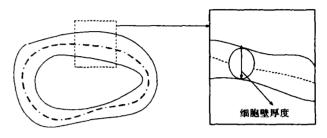
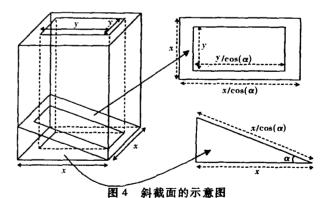


图 2 纤维横界面的二元图像示意图




图 3 欧几里得算法示意图

3 误差分析

SEM 图像分析法的误差主要有四个因素引起, 即样品的制备、数字图像、初始图像、纤维的数量。

3.1 样品制备产生的误差

在制备样品时,我们是假设纤维充分的线性化。 但是,实际上并没有那么好的线性化,因而在切片 时,得到的并不是垂直截面,而是一个带有倾斜角的 截面。图 4 是倾斜角为 α 的斜截面的示意图。

斜截面的各项参数可以修正为:

$$Aw = (x^2 - y^2)/\cos(\alpha)$$

$$Pav = 2x + 2x/\cos(\alpha) + 2y + 2y/\cos(\alpha)$$

$$WT = (x^2 - y^2)/[x\cos(\alpha) + y\cos(\alpha) + x + y]$$

《造纸科学与技术》 2003 年 第 22 卷 第 5 期

其中 Aw 代表纤维截面的细胞壁面积; Pav 代表纤维细胞腔内外周长的平均值; WT 代表纤维细胞壁厚度。

3.2 数字图像产生的误差

由于 SEM 图像是数字图像,由此引起的纤维细胞壁厚度的误差范围是±0.5 个象素。一般来说纤维周长有300 个象素点,那么数字图像对纤维细胞壁厚度产生的误差为:

$$\Delta WT = \frac{0.5}{\sqrt{300}} \times \$ \$ = 0.029 \$ \$$$

在放大倍数为130倍时,象素长度为0.3μm,可见由数字图像产生的误差是非常小的,可以忽略不计。

3.3 初始值产生的误差

当灰图转化成二元图像时,电镜观察的范围由初始值决定。灰度会随着时间的变化而变化,初始值用电镜灰图的柱形图来确定,一般初始值取在两个峰基线三分之一附近。不同的初始值会对观察面积产生一定的偏差。

3.4 纤维数量产生的误差

SEM 图像分析所得到的参数的误差服从 t 分布,因而测量的精确度随着测量次数的增加而提高。

一般来说,要达到 95% 的置信度,至少要做 980 根纤维样。

4 结语

SEM 图像分析方法能够准确的分析纤维的横向尺寸,而且对分丝帚化的及未分丝帚化的纤维均适用;可以分析同一过程不同纤维横向尺寸的变化;可以分析原料之间的不同。

SEM 图像分析技术,精确度高,适用范围广。 随着图像分析技术的发展,SEM 图像分析技术在造 纸工业中将有更广阔的应用前景。

参考文献

- [1] Kibblewhite, R. P. and Bailey, D. G. Measurement of Fibre Cross-sections Dimensions Using image processing. Applia, 1988, 41
 (4):297-303
- [2] Jang H F., Robertson, A. G. and Seth, R J., Optical Section of pulp fibers using optical scanning laser microscopy. Tappi J.. 1991,74(10):217-219.
- [3] Rame, P. A., Johnson, P. O. and Helle, T. Assessment of fibre transverse dimension using SEM and image analysis. Journal of pulp and paper science, 2002, 28 (4), 122 127

Assessment of Fibre Transverse Dimensions Using SEM Image Analysis

Liu Qianjun^{1,2} Zhan Huaiyu² Wang Xiwen² Wu Hong²
(1. Experimental and Research Centre, Guangdong University of Technology Guangzhou, 510090; 2. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640)

Abstract: The technique for assessment of fibre transverse dimension by using SEM image analysis was introduced in this article. The main factors generating testing error were also discussed.

Key words: SEM image analysis; fibre transverse dimension; fibre properties

十种纸张产品具有巨大发展潜力

下列 10 种纸被"轻工业新产品发展指南"列为最有潜力的纸种:

1. 低克重新闻纸; 2. 轻量涂布印刷纸; 3. 轻量涂布纸; 4. 亚光纸; 5. 高强度低克重牛卡; 6. 高强瓦楞纸; 7. 高档涂布牛皮纸和高档涂布牛卡; 8. 漂白牛皮纸; 9. A 级卷烟纸; 10. 汽车空气过滤纸.

(摘自"纸业资讯"2003年第8期)

Paper Science & Technology 2003 Vol. 22 No. 5