
3 The Cabling 

At the MHz frequencies involved in NDE tests, the electrical cables that 
transfer the electrical pulses from the pulser to the sending transducer and 
from the receiving transducer to the receiver do not just pass those signals 
unchanged. Thus, significant cabling effects may be present in some 
ultrasonic testing setups. Here we will discuss models and measurements 
that can help us to quantitatively determine the effects of the cables. These 
models and measurements will enable us to predict how the voltage and 
current change from one end of the cable to the other (Fig. 3.1). 

3.1 Cable Modeling 

At the most fundamental level we can model a cable as a set of coaxial 
conductors transferring electrical and magnetic fields ( ,E H ) from one end 
of the cable to the other, as shown in Fig. 3.2. It is shown in many texts on 
electromagnetism [3.1-3.7] that the fields at each end of the cable are 
related by the reciprocity relationship 
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where ( 1 1,E H ) are fields at the left end of the cable acting over an area 1S  
whose unit normal (pointing out from the cable) is 1n , and ( 2 2,E H ) are 
the corresponding fields at the other end, 2S , whose outward normal is 2n  
as shown in Fig. 3.2. The superscripts (1) and (2) on the field variables in 
Eq. (3.1) designate these fields when the cable is under two different 
driving/termination conditions at its ends. These two driving/termination 
conditions are labeled as states (1) and (2). If the fields are carried in the 
cable as a fundamental propagating electromagnetic wave mode called a 
TEM mode, then it can be shown that the electric field, E, can be expressed 
in terms of a potential  (voltage), V,  across the two conductors in the cable  
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Fig. 3.1. A cable and the voltages and currents at its end connectors. 

 
Fig. 3.2. The electrical and magnetic fields at the ends of a coaxial cable. 

and the magnetic field, H, can be related to the current, I, flowing through 
the central conductor [3.4]. These relations are 
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where c is a closed path taken around the central conductor of the cable 
and dl  is a vector differential element along that path. 

For such a propagating TEM mode it can also be shown that the 
reciprocity relationship of Eq. (3.1) reduces to a similar reciprocity relation-

 
 

ship between the voltages and the currents in states (1) and (2) given by 
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Fig. 3.3. A cable modeled in terms of the voltages and currents at its two ends 
(ports). 

 
Fig. 3.4. Cross-section of an ideal circular coaxial cable where the radius of the 
inner conductor is a and the radius of the outer conductor is b. 
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so that we can then consider our cable as modeled in terms of these 
voltages and currents where 1I  is the current flowing into the cable at the 
left end and 2I  is the current flowing out of the cable at the other end (see 
Fig. 3.3). If the reciprocity relationship of Eq. (3.3) is satisfied for any set 
of driving/termination conditions, then it can also be shown that the 
voltage and current at one end (port) of the cable are linearly related to the 
voltage and current at the other end (port) and we can model the cable as a 
reciprocal two port system (see Appendix C) where one has 
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and [ ] 11 22 12 21det 1T T T T= − =T .  
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Fig. 3.5. An equivalent circuit model of a cable. 

As developed in many electrical engineering texts, one can use a 
simple transmission line model of the cable and obtain an explicit expression 
for this transfer matrix [ ]Τ in the form [3.5] 
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where l is the length of the cable, 0
eZ  is the characteristic impedance of the 

cable (in ohms), and /ck cω=  is the wave number  and c is the wave speed 
of signals in the cable. For an ideal circular coaxial cable as shown in  
Fig. 3.4 where the inner conductor is of radius a and the outer conductor is 
of radius b the characteristic impedance of the cable is given by [3.5] 
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where µ  is the permeability and ε  the permittivity of the material in the 
cable between the inner and outer conductors.  

 In Appendix C we showed how a simple RC circuit could be express-
ed in transfer matrix form as a two port system. Thus it is not surprising 
that conversely a two port system can also be expressed as an equivalent 
circuit. There are actually many different equivalent circuits that yield the 
same results as the transfer matrix. Figure 3.5 shows one commonly used 
circuit [3.1] that uses three impedances arranged in a T-shape to model the 
cable.  

 If our cable model is terminated with a impedance, 2
eZ , as shown 

in Fig. 3.6 (a) then the cable and its termination can be represented as a 
single equivalent impedance, 1

eZ , as shown in Fig. 3.6 (b). The behavior of  
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Fig. 3.6. (a) A cable terminated with an impedance, 2

eZ , and (b) the equivalent 
impedance, 1

eZ , of this terminated cable. 

 
Fig. 3.7. The effect of different termination conditions on the equivalent 
impedance of a cable. 

this equivalent impedance versus the non-dimension frequency ck l  is 
shown in Fig. 3.7 for open-circuit ( 2

eZ →∞ ) termination, short-circuit 
2 0eZ =

 
( ) termination, and termination  at the  characteristic  impedance of  
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Fig. 3.8. Measured values of the magnitude and phase of a 50 ohm cable under 
open-circuit (dashed line), short-circuit (dashed-dotted line), and 50 ohm (solid line) 
termination conditions. 

the cable ( 2 0
e eZ Z= ). It can be seen that the open- and short-circuit cases 

generate frequency dependent equivalent impedances while in the matched 
termination case the equivalent impedance is frequency independent. This 
same behavior is seen when the equivalent impedance of a 50 ohm cable is 
measured experimentally, as shown in Fig. 3.8. The cables used in an 
ultrasonic test for sound generation and reception are terminated/driven by 
ultrasonic transducers which in general are not matched in impedance to 
the cable so that inherently we can expect some frequency dependent effects 
due to the cabling in NDE tests. 
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Fig. 3.9. (a) A cable, modeled as a two port system, under open-circuit conditions, 
and (b) under short-circuit conditions. Measurements of the voltages and currents 
shown can be used to determine the transfer matrix of the cable.  

3.2 Measurement of the Cabling Transfer Matrix 

As can be seen from Figs. 3.7 and 3.8 a simple two port model can 
accurately represent the behavior of an ordinary coaxial cable. However, 
we do not ordinarily know all the detailed parameters that are needed to 
obtain the transfer matrix components in Eq. (3.5). Furthermore, in 
immersion NDE testing, such cabling is connected to fixtures that support 
the transducer in an immersion tank and the details of the cabling within 
the fixtures are in general also not known. This is not a problem since it is 
possible to directly measure the transfer matrix components of the 
combined cabling and fixtures in situ by attaching the cable/fixture to a 
driving source, such as the ultrasonic pulser, and making a series of 
voltage and current measurements under different cable/fixture termination 
conditions. Figure 3.9 (a) shows a two port model of a cable under open-
circuit conditions at its output port and driving voltage ( )1

1V  and current ( )1
1I  

at its input port while Fig. 3.9 (b) shows the same model under short-circuit 
conditions at the output port with driving voltage ( )2

1V  and current ( )2
1I  at the 

input port. From Eq. (3.4) it is easy to see that: 
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Fig. 3.10. Measured values of the magnitudes and phases of the transfer matrix 
components versus frequency for a cable. 
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so that all the transfer matrix elements can be obtained by making measure-
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  Figure 3.10 shows the transfer matrix components found in this 

manner as a function of frequency for a cable (both amplitude and phase 
are plotted). It can be seen that the measured magnitudes of these 
components do exhibit the cosine and sine function behavior of Eq. (3.5) 
and the measured phase terms also generally follow that simple model 
behavior. As a reciprocity check on these measurements we can compute 
the determinant of the measured transfer matrix. Figure 3.11 shows that 
det[T] = 1 is well satisfied over a wide range of frequencies. 

 

Fig. 3.11. A check on the satisfaction of reciprocity ( det T =1) for the measured 
transfer matrix components of Fig. 3.10. The amplitude (solid line) and phase 
(dashed line) of the determinant are shown. 

v t ,i t ,  ments of the voltages and currents in these two states: 
i t (m  = 1,2) and Fourier transforming them to obtain 

(m  =1,2). The consistency of these measured transfer matrix 
elements can be checked by the reciprocity 
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3.4 Exercises 

1. Consider a 1 meter long, 50 ohm cable, where the wave speed in the 
cable is one half the wave speed of light, c0 ,in a vacuum (c0 = 2.998 x 
108 m/sec). Determine the transfer matrix components of the cable at 
10 kHz, 100 kHz, 1 MHz, 20 MHz. 
 
2. Consider a cable for which we wish to measure the transfer matrix 
components (as a function of frequency). We can do this in MATLAB for 
a function cable_X which has the calling sequence: 
 
>> [ v1, i1, vt, it] = cable_X( V, dt, R,  L, 'term'); 
 
 

 
Fig. 3.12. A measurement setup for obtaining the transfer matrix components of a 
cable. 
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The input arguments of cable_X are as follows. V is a sampled voltage 
source versus time, where the sampling interval is dt. R is an external 
resistance (in ohms). This source and resistance are connected in series to 
one end of the cable, which is of length L (in m) as shown in Fig. 3.12. 
The other end of cable can be either open-circuited or short-circuited. The 

sampled voltages and currents versus time (v1, i1, vt, it ) where (v1, i1) are 
on the input side of the cable and (vt, it) are at the terminated end (Note: 
for open-circuit conditions it = 0 and for short-circuit conditions vt = 0). 
As a voltage source to supply the V input to cable_X use the MATLAB 
function pulserVT. For a set of sampled times this function returns a 
sampled voltage output that is typical of a “spike” pulser. Make a vector, t, 
of 512 sampled times ranging from 0 to 5 µsec with the MATLAB call: 
 
>> t = s_space(0, 5, 512);  
 
(see the discussion of the s_space function in Appendix A; a code listing of 
the function is given in Appendix G) and call the pulserVT function as 
follows: 
    
>> V = pulserVT(200, 0.05, 0.2, 12, t); 
 
For the resistance, take R = 200 ohms, and specify the length of the cable 
as L = 2 m.  
 Using Eq. (3.7), determine the four cable transfer matrix 
components and plot their magnitudes and phases from 0 to 30 MHz. Note 
that the outputs of cable_X are all time domain signals but the quantities in 
Eq. (3.7) are all in the frequency domain so you will need to define a set of 
512 sampled frequency values, f, through: 
      
>> dt = t(2) –t(1); 
>> f =s_space(0, 1/dt, 512); 
 
What is the range of frequencies contained in f here? 

string ‘term’ specifies the termination conditions. It can be either ‘oc’ for 
open-circuit or ‘sc’ for short-circuit. Cable_X then returns the “measured” 




