
4 Transmitting Transducer and the Sound 
Generation Process 

In this Chapter we will discuss models of the ultrasonic transducer as a 
transmitting device that converts electrical energy into acoustic energy. 
We will also combine the models of the pulser and cabling from Chapters 
2 and 3 with the transducer model of this Chapter to describe a model of 
the entire sound generation process.  

4.1 Transducer Modeling 

An ultrasonic transducer is normally based on a piezoelectric material that 
has the ability to convert electrical energy at its electrical port into acoustic 
energy (motion) at its acoustic port and, conversely, to also convert 
acoustic energy back into electrical energy. Thus a piezoelectric ultrasonic 
transducer can act as both a transmitter and receiver of sound. In this 
Chapter we will examine the transducer in its role as a transmitter. By 
treating the coupled electromagnetic and elastic fields contained in the 
transducer as those of a piezoelectric medium and considering the fields at 
the two transducer ports as purely electrical fields and acoustic fields that 
arise from those internal piezoelectric interactions, one can define a recipro-
city relationship between the fields at the two ports in the form [4.1-4.3] 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 1 1 2 1 2 2 1 ,
cS S

dS p p dS× − × ⋅ = − ⋅∫ ∫E H E H n v v n  (4.1)

where ( ,E H ) are the electrical and magnetic fields at the transducer’s elec-
trical port (over area cS ) and ( ,p v ) are the pressure and velocity fields at 
the acoustic port (over area S ), and n is the unit normal pointing outwards 
from each port (see Fig. 4.1). Only the pressure appears on the right side of 
Eq. (4.1) since for an immersion transducer this is the only component of 
the stress tensor that can exist for a fluid. Even for a contact transducer, 
however, there is normally a thin fluid couplant layer between the transducer 
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Fig. 4.1. The electrical and magnetic fields at a transducer's electrical port and the 
corresponding voltage and current flowing into that port. At the acoustic port 
distributed pressure and velocity fields are generated, as shown.  

and the solid component so that in contact testing again only a pressure 
exists at the transducer face. The superscripts (1) and (2) indicate these 
fields for two different states (i.e. under two different sets of driving and 
termination conditions). If we assume that the electrical and magnetic 
fields at the electrical port are in the form of TEM waves, as done for the 
cable in the previous Chapter, then we have [4.3] 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 1 2 1 1 2(1) ,
S

V I V I p p dS− = − − ⋅∫ v v n  (4.2)

where V and I are the voltage and current flowing into the electrical port, 
as shown in Fig. 4.1. At the acoustic port, we will assume the transducer 
acts as a piston transducer, i.e. the velocity is constant over the area S. This 
is an assumption frequently used to model ultrasonic transducers and is 

( ) ( ) ( )

( ) ( )

,
p

F p dS

v

ω ω

ω ω

=

= ⋅

∫ x x

v n
 (4.3)

so that F is the compressive force acting at the transducer face and v is the 
uniform outward normal velocity on this face. In this case Eq. (4.2) becomes 
 
 
 

expressed in terms of the two quantities, F and v, where 
one we will adopt here. In that case, the right side of Eq.(4.2) can be 
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Fig. 4.2. (a) An ultrasonic transducer represented as a device that converts voltage 
and current into force and velocity and (b) its corresponding two port system 
representation. The pressure distribution over the acoustic port that generates the 
force F is generally non-uniform, as shown. However, we assume the velocity 
distribution at the acoustic port is uniform as shown, i.e. the transducer acts as a 
piston. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 1 1 2 2 1 ,V I V I F v F v− = −  (4.4)

which is the reciprocity relation in terms of “lumped” parameters. Even if 
the transducer does not act as a piston, it is possible to use Eq. (4.4). The 
details can be found in [4.3] but we will not discuss that generalization 
here. In terms of these parameters, therefore, we can consider a transducer 
as a two port device that converts voltage and current into force and velocity, 
as shown in Fig. 4.2. If the reciprocity relation Eq. (4.4) is satisfied for all 
states then this two port system can be written in terms of a reciprocal 
transfer matrix A⎡ ⎤⎣ ⎦T , where 

11 12

21 22

, det 1.
A A

A
A A

V FT T
I vT T

⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎡ ⎤= =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎣ ⎦⎩ ⎭ ⎩ ⎭⎣ ⎦
T  (4.5)

By modeling the fields in the transducer as 1-D fields, Sittig [4.4], 
[4.5] developed an explicit expression for the transfer matrix components 
that describe a compressional wave transducer. In the Sittig model, the  
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transfer matrix of a transducer A, A⎡ ⎤⎣ ⎦T , can be written as a product of two 

2x2 transfer matrices, ,A A
e a⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦T T , as A A A

e a⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦T T T , where 
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The multiple parameters appearing in this model are as follows. 
The parameter k is the wave number for the piezoelectric plate, 0/k vω= , 
where 0v  is the wave speed of compressional waves in the piezoelectric 
plate given by 0 33 /D

Pv c ρ=  in terms of the elastic constant of the plate, 
33
Dc , at constant electric flux density, and Pρ , the density of the plate. The 

constant 33 0n h C=  is given in terms of 33h , a piezoelectric stiffness constant 
for the plate, and 0C , the clamped capacitance of the plate, which is given 
by 0 33/ SC S dβ= , where S is the area of the piezoelectric plate, 33

Sβ  is the 
dielectric impermeability of the plate at constant strain, and d is the plate 
thickness. The quantity 0 0

a
PZ v Sρ=  is the plane wave acoustic impedance 

of the piezoelectric plate, while ( )a
bZ ω is the corresponding acoustic 

impedance of the backing (which is a function of frequency since the 
backing normally consists of one or more layers and is highly attenuating).  

It can be seen from Eq. (4.6) that in order to use the Sittig model 
one must know in considerable detail the internal material and geometry 
parameters of the transducer. When designing and manufacturing trans-
ducers, such details are known explicitly but it is not possible to obtain 
such detailed knowledge of transducers that are purchased commercially. 
Thus, one must rely instead on experimental means to determine the 
transfer matrix of the transducer. Unfortunately, at present a practical 
experimental method does not exist that can determine the complete 
transfer matrix of an ultrasonic transducer. The problem lies in the fact  
that it is difficult to enforce different known termination conditions at the 
acoustic port (as was done in the cable case for one of the electrical 
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Fig. 4.3. (a) A 1-D model of the electrical and acoustic parameters for a plated 
piezoelectric crystal and (b) its representation as a three port system. 

ports of the cable). Also, while it is easy to measure the voltage and 
current at the electrical port of the transducer it is more difficult to measure 
the force and velocity parameters at the acoustic port without investing in 
expensive equipment. Fortunately, as we will show later, we can char-
acterize the role of the transducer in an ultrasonic measurement setup in 
terms of only two parameters that are related to the transducer's transfer 
matrix. These two parameters are the transducer's sensitivity and its 
equivalent electrical impedance. We will also show that it is possible to 
determine the sensitivity and impedance with purely electrical measure-

have the full set of transfer matrix components for characterizing the 
transducer.   

In designing ultrasonic transducers, many designers find it conveni-
ent to use a three port model instead of the two port Sittig model. The 
Mason model and the KLM model are two models of this type that are 
commonly used in  practice  [4.6],[4.7]. Like the Sittig model, both models  

ments at the transducer’s electrical port. Thus, we can bypass the need to 
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Fig. 4.4. The Mason equivalent circuit model of the three port system defined by 
Eq. (4.7). 

 
Fig. 4.5. The KLM equivalent circuit model for the three port system defined by 
Eq. (4.7). 

treat the transducer as a plated piezoelectric element where 1-D electrical 
and mechanical fields are present, as shown in Fig. 4.3. The electrical port 
is where electrical connections are made to the plated faces of the 
piezoelectric plate while the two acoustic ports are the two faces of the 
plate (Fig. 4.3). The electrical and mechanical lumped parameters for this 
three port model can be shown to satisfy the relations [4.8] 
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Fig. 4.6. Construction of a typical commercial transducer showing the crystal 
backing and one or more facing acoustic layers at the transducer acoustic output 
port. 

 
Fig. 4.7. The acoustic two port system model of an acoustic layer. 
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 (4.7)

which can be seen to be given in the form of a 3x3 impedance matrix. Note 
that in Eq. (4.7) the velocities are assumed to be flowing into the 
transducer at the acoustic ports. This convention is opposite to what is 
assumed (at the acoustic output port) of a transfer matrix model (see 
Fig. 4.2 (b)). If the material backing on the piezoelectric element is 
specified as a given acoustic impedance, ( )a

bZ ω , as done for the Sittig 
model, then this three port model reduces to a two port model. The Sittig 
model is just a transfer matrix representation of the resulting two port 
system. In contrast, the Mason and KLM models are just equivalent circuit 
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representations of the three port system described by Eq. (4.7) where the 
acoustic impedance of the backing of the piezoelectric element is not 
specified. Figure 4.4 shows a schematic of the Mason equivalent circuit 
model and Fig. 4.5 shows the KLM equivalent circuit.  

 The Sittig model is a particularly useful model to use to consider 
additional acoustic layers in the transducer model at the transducer output 
port. Such layers are normally present in the form of wear plates to protect 
the piezoelectric element or impedance matching plates (Fig. 4.6) and can 
be represented as acoustic two port systems (Fig. 4.7). The transfer matrix 

l⎡ ⎤⎣ ⎦T for an acoustic layer containing 1-D propagating compressional waves 
is given by 

( ) ( )
( ) ( )

1 20

1 20

cos sin
,

sin / cos

a
a a a a

a
a a a a

F Fk l iZ k l
v vi k l Z k l

⎡ ⎤−⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎩ ⎭⎣ ⎦

 (4.8)

where /ak cω= is the wave number for waves traveling in the layer with 
compressional wave speed, c, al is the layer thickness, and 0

aZ cSρ=  is the 
acoustic impedance of the layer, with ρ  the density of the layer and S is 
the cross-sectional area. Note that this transfer matrix has exactly the same 
form as the matrix obtained for a cable, so this matrix is the acoustic 
analog of that electrical model. A transducer containing such an acoustic 
layer can be joined with the Sittig model by simply multiplying that model 
by an additional acoustic transfer matrix so that the entire transfer matrix 
for the transducer, [ AT ], is given by 

A A A l
e a⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦T T T T  (4.9)

and more layers can be handled in exactly the same fashion. 

4.2 Transducer Acoustic Radiation Impedance 

When an ultrasonic transducer is used in an ultrasonic measurement 
system its acoustic port is always terminated, i.e. the output force and 
velocity are related to one another. For an immersion transducer radiating 
into a fluid, for example, we will show in Chapter 8 that for a planar piston 
transducer the pressure field, ( ),p ωx , on the face of the acoustic output port 
of the transducer is given in terms of the uniform  normal velocity, ( )tv ω , 
at that port by the Rayleigh-Sommerfeld integral: 
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Fig. 4.8. An ultrasonic immersion transducer radiating into a fluid. 

 
Fig. 4.9. A transducer A, whose acoustic radiation impedance is ;A a

rZ , radiating 
into a material and  modeled as a acoustically terminated two port system. 

( ) ( ) ( ) ( )exp
, ,
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ωρ ω

ω
π

−
= ∫x y  (4.10)

where x and y are two points on the surface, S, of the transducer face, ρ  is 
the density of the fluid, /k cω=  is the wave number for waves propa-
gating in the fluid whose compressional wave speed is c, and r = −x y  is 
the distance between x and y. Since the compressional force, tF , at the 
transducer’s output port is just the integral of this pressure, we have 

( ) ( ) ( ) ( ) ( )

( ) ( )
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2

,
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a
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ikriF dS dS v
r

Z v

ωρω ω
π

ω ω

⎡ ⎤−
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⎣ ⎦

=

∫ ∫ y x
 (4.11)

where the term in brackets in Eq. (4.11), a
rZ  , is called the transducer radia-

tion impedance. The radiating transducer A of Fig. 4.8, therefore, can be 
represented as a terminated two port system as shown in Fig. 4.9. Greenspan  
[4.9] has shown that the two integrals in Eq. (4.11) can be performed for 
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Fig. 4.10. The normalized acoustic radiation impedance of a circular, planar, 

a circular planar piston transducer of radius a, to obtain an explicit expression 
for the radiation impedance given by 

( ) ( );
1 1/ 1 / ,A a

r AZ cS J ka iS ka kaρ = − ⎡ − ⎤⎣ ⎦  (4.12)

where 1 1,J S  are first order Bessel and Struve functions, respectively, and 
2

AS aπ=  is the area of the “active” face of the transducer at its acoustic 
port. Figure 4.10 shows a plot of this normalized radiation impedance 
versus ka , which is a non-dimensional frequency.  

It can be seen from Fig. 4.10 that for approximately 10ka > we 
can take a

r AZ cSρ=  which is just the value of the acoustic impedance of a 
traveling plane wave. For most ultrasonic transducers, the ka value at the 
MHz frequencies used in testing is large. For example, at 5 MHz a 
6.35 mm radius piston transducer radiating into water has a ka value of 
approximately 135. This same transducer radiating into steel would have a 
ka value of approximately 34. Thus, even though such ultrasonic 
transducers generate  sound beams that are not just plane waves, their 
acoustic radiation impedances can generally be taken as simply as the 
constant value, cSρ , of a plane wave. This is true for any shaped piston 
transducer, not just the circular case considered by Greenspan. To see this 
consider Eq. (4.11) again and with x fixed let ( )dS rdrdφ′=y (see Fig. 4.11 
(a)). Then the radial integration can be performed to yield 

 

piston transducer A of radius a versus the non-dimensional frequency, ka. 
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Fig. 4.11. (a) Integration over points y on the transducer face, and (b) averaging 
over points x on the transducer face, leading to (c) remaining integrations in terms 
of the distance, eR , between  points on the transducer edge. 
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 (4.13)

where ( )( ),e e er r φ′= x y is the radius from point x to a general point on the 
edge of the transducer surface, S (see Fig. 4.11 (b)). With ( )e φ′y fixed, we 
can let ( ) e edS r dr dφ=x  and Eq. (4.13) becomes 
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where eR  is shown in Fig. 4.11 (c). Performing the integral on er by parts, it 
follows that 
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so that at high frequencies the integral in Eq. (4.14) can be neglected and 
we have 

( ) ( )t tF cS vω ρ ω=  (4.16)

4.3 Transducer Impedance and Sensitivity 

Since to date there is not a practical method available to determine experi-
mentally all the transfer matrix components of a radiating transducer, it is 
necessary to re-examine the terminated model of Fig. 4.9 and express it in 
terms of quantities that can be easily measured. In this case we can write 
the transfer matrix relations for a transmitting transducer A either in terms 
of the transmitted output force, tF , or the transmitted output velocity, tv , 
since 

;
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 (4.17)

The effects of this transducer on the other electrical components 
connected to it through its electrical port are determined by the transducer’s 
electrical impedance, ( );A e

inZ ω , which is given by 

;
; 11 12

;
21 22

A a A A
A e in r

in A a A A
in r

V Z T TZ
I Z T T

+
= =

+
 (4.18)
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However, this quantity can obviously be obtained by measuring inV  and inI , 

tively, when it is radiating into a material and it is not necessary to know 
the underlying transfer matrix components in Eq. (4.18) [4.10]. If the 
transducer’s electrical impedance ( );A e

inZ ω  were found in this fashion by 
electrical measurements and if we also had characterized the pulser and 
cabling by the methods discussed in Chapters 2 and 3 for a given 
ultrasonic setup, we could then find explicitly both the voltage inV  and the 
current inI ( );A e

in ω  
is all that is needed to characterize the electrical properties of the 
transducer in an ultrasonic measurement system. In addition, if we knew 
the transducer’s radiation impedance, ;A a

rZ  and also obtained a measure of 
a quantity such as /t inv I  or /t inF V , we could determine both the output 
force and velocity of the transducer and we would have characterized the 
transducer completely, i.e. both electrically and acoustically. Such 
quantities, which are just ratios of a transducer output to a transducer 
input, are called transducer transmitting sensitivities, OIS , where O is an 
output quantity such as force or velocity, and I is an input quantity such  as 
voltage or current, and  /OIS O I= . There are, obviously, a number of 
different sensitivities one could define. For example we have 
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; ;
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in

A A a A A et
FV r vI in

in

vS
I
FS Z S
I
vS S Z
V
FS Z S Z
V

=

= =
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 (4.19)

We will choose to describe the transducer A in terms of its sensitivity A
vIS . 

As Eq. (4.19) shows, if we also know the transducer’s electrical impe-
dance, ( );A e

inZ ω ,and its acoustic radiation impedance, ;A a
rZ , we could then 

also obtain any of the other sensitivities listed in Eq. (4.19). From Eq. (4.17) 
it follows that: 
 

 

the driving voltage and current at the transducer’s electrical port, respec-

 at the transducer’s electrical port for this setup. Thus, Z
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Fig. 4.12. A model of a transmitting ultrasonic transducer as an electrical 
impedance and an ideal “converter” that transforms the input electrical signals into 
the acoustic output signals. 

;
21 22

1 .A t
vI A a A A

in r

vS
I Z T T

≡ =
+

 (4.20)

  It will be shown in Chapter 7 that it is possible to obtain this 
sensitivity by direct electrical measurements of the voltage and current at 
the transducer's electrical port, so that there is a practical way to determine 
all the transducer parameters, ; ;, ,A e A A a

in vI rZ S Z .Thus, we can replace the two 
port transfer matrix model of the transmitting transducer by the simpler 
model shown in Fig. 4.12, where we have represented the transducer as an 
electrical impedance and an ideal “converter” that transforms the input 
current to output velocity (or force). 

4.4 The Sound Generation Process 

We can combine our pulser, cabling and transducer models into a complete 
model of the entire sound generation process in an ultrasonic measurement 
system [4.10]. This generation process model is shown schematically in 
Fig. 4.13. We can treat this whole process as a single input, single output 
LTI system that is characterized by a transfer function, ( )Gt ω , as shown in 
Fig. 4.14. We will choose to write this transfer function in terms of the output 
force rather than the output velocity as ( ) ( ) ( )/G t it F Vω ω ω= . Since we have 
defined all of the elements contained in the sound generation process, we 
can obtain an explicit expression for this transfer function. From Fig. 4.13 
we have 
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Fig. 4.13. A model of the entire sound generation process in an ultrasonic system. 

Fig. 4.14. (a) The elements in the sound generation process – the pulser, the 
cabling, and the transmitting transducer and (b) an LTI system model of the sound 
generation process whose transfer matrix is ( )Gt ω . 
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Fig. 4.15. A sound generation transfer function obtained experimentally. (a) Magni-
tude of the transfer function versus frequency and  (b) its phase versus frequency. 
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where ( )11 12 21 22, , ,T T T T  are the components of the transfer matrix, [ ]T , for 
the cabling between the pulser and the transmitting transducer, ;A e

inZ is the 
electrical impedance of the transmitting transducer A and A

vIS  is its 
sensitivity, and ;A a

rZ  is the acoustic radiation impedance of the transducer. 
With this transfer function we can model completely the effect of the 
pulser, the cabling and the transducer and predict the output force, ( )tF ω . 
Figure 4.15 shows an example where the magnitude and phase of a sound 
generation transfer function, ( )Gt ω , was experimentally determined by 
characterizing all the components contained in Eq. (4.21). In this case the 
pulser was the pulser section of a Panametrics 5052 PR  pulser/receiver 
(measured at a set of specific energy and damping  settings). The cabling 
consisted of 1.83 m of flexible 50 ohm coaxial cable connected to a 0.61 m  
 

Using Eqs. (4.21 - 4.24) it is easy to show that [4.10] 
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fixture rod. The rod also contained internal cabling and was terminated by 
a right-angle adapter to which the transducer was connected. The trans-
ducer was a relatively broadband 6.35 mm diameter 5 MHz immersion 
transducer. The sensitivity and impedance of the transducer were obtained 
by the methods which will be discussed in Chapter 6. 
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Fig. 4.16. A plane wave incident on a layer. 

 
Fig. 4.17. Waves incident on a layer, showing the first few reflected and 
transmitted waves. 

transmitted and reflected waves, as shown in Fig. 4.16. Let the velocities 
of these waves in their directions of propagation be given by 
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where we have written the transmitted wave in terms of the coordinate 
2x x h= −  since that wave only exists for 2 0x ≥ .  Then the corresponding 

forces in these waves are 
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On the sides of the layer we have 1 2 1 2, , ,i r t i r tF F F F F v V V v V= + = = + = . 
Using Eq. (4.8) for the layer then we can obtain the reflection and 
transmission coefficients of the layer in the forms 

( )
( )

( )
( )

21 12 21 2
12 2

21 2

12 21 2
2
21 2

exp 2
1 exp 2

exp
,

1 exp 2

r

i

t

i

R T T ik hFR R
F R ik h

T T ik hFT
F R ik h

= = +
−

= =
−

 

where ,ij ijR T are the plane wave reflection and transmission coefficients 
for a single interface going from medium i to medium j given by (see 
Appendix D): 
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The layer reflection and transmission coefficients ( ),R T  are 
functions of frequency because they contain all the waves that bounce back 
and forth in the layer and emerge into the adjacent media. To examine this 
behavior in frequency use MATLAB to plot the magnitude of these 
coefficients for 500 frequency values ranging from zero to 20 MHz for a 
thin (1 mm thick) aluminum plate in water. Can you explain the frequency 
dependent behavior of this plot?  

To see the individual reflected and transmitted waves, we can expand 
the denominators of the ( ),R T  expressions and obtain 

( ) ( ){ }
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2
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which are the first few reflected and transmitted waves as shown in 
Fig. 4.17. Use MATLAB to calculate the magnitude of ( ),R T  for just 
these first few terms. How do your results here compare to your previous 
results?  




