
5 The Acoustic/Elastic Transfer Function and the 
Sound Reception Process 

5.1 Wave Processes and Sound Reception 

The last Chapter showed how to characterize the relationship between the 
Thévenin equivalent driving voltage of the pulser and the output force, 

( )tF ω , at the face of the transmitting transducer. That output force will 
launch waves from the transducer, waves that will propagate and interact 
with the component being inspected as well as with whatever flaws may be 
present. A portion of these waves will be captured by a receiving trans-
ducer as shown in Fig. 5.1. The waves incident on the receiving transducer 
will generate a force on that transducer, labeled ( )BF ω  in Fig. 5.1. All the 
acoustic/elastic wave propagation and scattering interactions that occur 
between the transmitting transducer and the receiving transducer are 
complex 3-D wave phenomena.  

Later Chapters will describe in detail how models can describe 
these waves. Here, we are interested in characterizing the role that the 
acoustic/elastic interactions play in the overall ultrasonic measurement 
system and we will give some simple examples of those interactions. We 
will also describe models for characterizing the entire reception process 
(see Fig. 5.2) where the force, ( )BF ω , is converted into electrical energy 
at the receiving transducer, transmitted by a cable to the receiver, and then 
amplified to generate a final system output voltage, ( )RV ω . Like the process 
of sound generation both the acoustic/elastic process and the reception 
process can be modeled as transfer functions. The acoustic/elastic transfer 
function is defined as: 

( ) ( )
( )

B
A

t

F
t

F
ω

ω
ω

=  (5.1)

and the reception process transfer function is defined as: 
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Fig. 5.1. (a) An ultrasonic pitch-catch immersion inspection, showing the 
acoustic/elastic waves present between the sending transducer and the receiving 
transducer, and (b) an LTI system model of those acoustic/elastic processes whose 
transfer function is ( )At ω . 

Fig. 5.2. (a) The elements of the reception process – the receiving transducer, the 
cabling, and the receiver portion of a pulser/receiver, and (b) an LTI system model 
of the reception process whose transfer function is ( )Rt ω . 
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Fig. 5.3. Modeling the interaction of the waves incident on a “blocked” receiving 
transducer where the waves are treated as plane waves and the transducer surface 
is treated as a infinite, planar and rigid (immobile) boundary. 
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5.2 The Blocked Force 

The force, ( )BF ω , appearing in both Eqs. (5.1) and (5.2) is a particular 
force acting on the receiving transducer called the blocked force. This 
blocked force is defined as the force that would be exerted on the receiving 
transducer if its face was held rigidly fixed (immobile). We will see shortly 
why this specific force arises naturally when we discuss the reception 
process. However, we can use a simple model to gain some additional 
understanding of this force. Consider, for example, the waves incident on a 
receiving transducer in an immersion setup. Let θ be the angle that these 
incident waves make with the normal to the transducer and assume that 
these incident waves behave like harmonic plane waves, as shown in 
Fig. 5.3. If we neglect any wave diffraction effects at the edges of the 
receiving transducer, we can model the face of that transducer, when its 
face is held rigidly fixed, as an infinite plane rigid surface, as shown in 
Fig. 5.3. The pressure of the incident plane wave can be given as 

( )exp cos sininc ip P ik x y i tθ θ ω= ⎡ + − ⎤⎣ ⎦  (5.3)
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and the pressure in the plane reflected wave given by 

( )exp cos sinreflt rp P ik x y i tθ θ ω= ⎡ − + − ⎤⎣ ⎦  (5.4)

since it reflects from the surface with the same angle as the incident wave 
as shown in Appendix D. At the transducer face, x = 0, which is held 
rigidly fixed, the total displacement and velocity normal to the transducer 
(in the x-direction) must be zero. Thus, from the equation of motion (see 
Appendix D) we have at the transducer face 

( ) ( )
0

0

, ,1, , 0x x
x

p x y t
v x y t

i xωρ=
=

∂
= =

∂
 (5.5)

where inc refltp p p= +  is the total pressure. Placing Eqs. (5.3) and (5.4) into 
Eq. (5.5) we find 

( ) ( )cos exp sin 0i r
ik P P iky i t

i
θ θ ω

ωρ
− − =  (5.6)

so that i rP P=  and the total pressure, Bp , at the blocked transducer face is 
just 2B incp p= . If we let S be the area of the face of the transducer then we 
see that the blocked force acting on the face of the transducer, 

( )B B
S

F p dSω = ∫∫ , is just twice that of the force inc inc
S

F p dS= ∫∫ , exerted by 

the incident wave over the same area, i.e. 

( ) ( )2B incF Fω ω=  (5.7)

To summarize: If we assume plane wave interactions at the receiving trans-
ducer, the blocked force, ( )BF ω , is just twice the force, ( )incF ω , exerted by 
the waves incident on the area of the receiver. The force, ( )incF ω , acting 
on S is computed from the incident waves as if the transducer were absent.   
 Many authors use Eq. (5.7) without further discussion since the 
plane wave interaction assumption on which it is based is likely a good 
assumption in most cases. We will also find it useful to use Eq. (5.7) when 
obtaining the acoustic/elastic transfer function since then we can model the 
pressure wave field of only the incident waves at the receiving transducer 
and use Eq. (5.7) to obtain the blocked force, without having to consider 
explicitly any more complex interactions of the incident waves with the 
receiving transducer. 
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Fig. 5.4. An ultrasonic pitch-catch calibration setup where the waves generated by 
a circular planar piston transducer are received by a second circular planar 
transducer and where the transducer axes are aligned. 

5.3 The Acoustic/Elastic Transfer Function 

To obtain the acoustic/elastic transfer function, ( )At ω , in a general ultra-
sonic NDE measurement system requires a knowledge of the waves 
propagating in the component being inspected as well as the waves 
generated by any flaws present. We will develop models needed to 
describe those waves in Chapters 9 and 10. Here, however, we will discuss 
some simple setups where there are explicit analytical expressions for the 
acoustic/elastic transfer function. One setup that is commonly used for 
calibrating pitch-catch setups is shown in Fig. 5.4 where a circular planar 
piston transducer, of radius a, radiates waves into a fluid which are 
captured by a circular planar piston receiving transducer of radius b, where 
the two central axes of the transducers are aligned and the transducer faces 
are parallel to one another.  In this case an explicit model has been 
developed for ( )incF ω ,  the force of the waves incident on the area of the 
receiver (in the absence of that receiver). This force is given by [5.1] 
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where  
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and , pcρ  are the density and compressional wave speed of the fluid, respec-
tively, /p pk cω= , ( )0v ω  is the velocity on the face of the transmitting 
transducer, and D is the distance between the transducers. If we take the 
acoustic radiation impedance of the transmitter as 2a

r pZ a cπ ρ=  and the 
blocked force at the receiver as 2B incF F= , then we have for the transfer 
function 
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In the special case when the transducers are both of the same size (b = a), 
Eq. (5.10) reduces to 
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 (5.11)

At high frequencies the integral in Eq. (5.11) can be evaluated analytically, 
yielding [Fundamentals] 
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where 0 1,J J  are Bessel functions of order zero and one, respectively.  
 Although Eq. (5.12) is only an approximation of Eq. (5.11) it has 

been found to give accurate results when 1pk a >>  which is well satisfied 
for the size of transducers and frequencies used in NDE testing. Thus, 
Eq. (5.12) can be regularly used in place of Eq. (5.11). This eliminates the 
need to numerically evaluate any integrals. 
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Fig. 5.5. An ultrasonic pulse-echo calibration setup where the waves generated by 
a circular, planar, piston transducer are reflected from a plane fluid-solid interface 
at normal incidence and the reflected waves are received by the same transducer. 

 Some more explicit results can also be obtained from Eq. (5.10) 
for other cases as well. For example, if we assume a  >> b Eq. (5.10) 
reduces to 

( ) { }
2

2 2
22 exp exp .A p p

bt ik D ik D a
a

ω ⎡ ⎤⎡ ⎤= − +⎣ ⎦ ⎣ ⎦  (5.13)

This is just the case where the receiver is small enough so that it acts as a 
point source and the transfer function is just proportional to the on-axis 
pressure of the transmitting transducer (see Chapter 8). Similarly, if we 
assume b >> a then Eq. (5.10) becomes 

( ) { }2 22 exp exp ,A p pt ik D ik D aω ⎡ ⎤⎡ ⎤= − +⎣ ⎦ ⎣ ⎦  (5.14)

which again is proportional to the on-axis pressure. For the case where the 
transducers are separated by a large distance D, where D >> a, b, 
Eq. (5.10) becomes 

( ) ( )2
exp

,p
A p

ik D
t ik a

D
ω = −  (5.15)

which has the behavior of a spherically spreading wave, a behavior that is 
characteristic of point sources and the transducer far-field (again, see 
Chapter 8).  

 A similar immersion calibration setup that is useful for pulse-echo 
testing is shown in Fig. 5.5 where a circular planar piston transducer of 
radius a is oriented at normal incidence to the planar surface of a solid 
block. In this case, the force in the waves incident on the receiver from the 
front face of the solid, ( )incF ω , can be obtained as [Fundamentals]: 
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where 1 1, pcρ  are the density and compressional wave speed of the fluid, 
1 1/p pk cω=  is the wave number, ( )0v ω  is the velocity on the face of the trans-

mitting transducer when it is firing, and D is the distance from the trans-
ducer to the fluid-solid interface (Fig. 5.5). The quantity 12R  is the plane 
wave reflection coefficient for the interface, based on the ratio of the 
reflected pressure to that of the incident pressure (see appendix D) given 
by 
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where 2 2, pcρ  are the density and compressional wave speed of the solid, 

respectively. If we again take the radiation impedance as 2
1 1

a
r pZ a cπ ρ=  

and the blocked force as 2B incF F= , we obtain the transfer function 
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It is interesting to note that apart from the reflection coefficient Eq. (5.18) 
is identical to Eq. (5.12) if we replace the D in Eq. (5.12) by 2D. This 
similarity occurs because we can view the reflected waves as arising from 
a fictitious  “image” transmitting transducer located a distance 2D from the 
receiving transducer. Thus, for the pitch-catch response of two transducers 
of the same radius located co-axially in a fluid we have, from Eq. (5.12) 

( ) ( ) ( )2 / expA p p pt D k a D ik Dω =  (5.19)

and for the pulse-echo case, from Eq. (5.18) 

( ) ( ) ( )2
12/ 2 exp 2A p p pt D k a D R ik Dω =  (5.20a)

with 

( ) ( ) ( ) ( ){ }0 12 1 exp .pD u iu J u i J u ⎤= ⎡ − −⎣ ⎦  (5.20b)
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Fig. 5.6. The magnitude of the acoustic/elastic transfer function for two identical 
circular 3.175 mm radius planar piston transducers in water facing one another in 
a pitch-catch configuration as shown in Fig. 5.4 with the distance D = 444 mm. 
The effect of attenuation was included by using Eq. (5.22a) with the attenuation 
given by Eq. (5.21). 

From Eq. (5.19) we can recognize the term without the pD function as just 
the transfer function for a plane wave that had traveled directly from the 
transmitter to the receiver, while in Eq. (5.20a) the terms without the 

pD function would be the transfer function describing a plane wave that had 
traveled from the transmitter to the interface, been reflected from the inter-
face and then traveled back to the receiver. Thus, pD  is just the diffraction 
correction term for these two cases that takes into account the deviations 
from a plane wave result. These deviations exist because the transducer 
produces a beam of sound rather than just a plane wave (see the discussion 
in Chapter 8 of diffraction corrections and the paraxial approximation). 
The factor of two in the pD  expression arises simply because our transfer 
function is defined in terms of the blocked force rather than the force of 
the incident waves.  

 In using these transfer functions to model the propagation of 
waves in a real fluid, such as water, it is important to include the effects of 
material attenuation, which is absent in these transfer functions since they 
were developed under the assumption that the waves were propagating in 
an ideal (loss free) compressible fluid. Adding attenuation to these transfer 
functions  can  be  done  by  including  a  term of the form ( )exp f zα⎡− ⎤⎣ ⎦ ,  
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Fig. 5.7. A receiving transducer as a two port system. To use this model we need 
to know the nature of the acoustic sources driving the transducer. 

where ( )fα is a frequency dependent attenuation coefficient (measured in 
Nepers/unit length – see Appendix D) for the material the waves are 
traveling in and z is the distance traveled in that material. The attenuation 
coefficient for water at room temperature, for example, has been measured 
as [Fundamentals] 

( ) 6 225.3 10w f fα −= ×  Nepers/mm (5.21)

where f is the frequency in MHz. Using this attenuation correction the 
transfer functions of Eq. (5.19) and (5.20) become 

( ) ( ) ( ) ( )2 / exp expA p p p wt D k a D ik D f Dω α= ⎡− ⎤⎣ ⎦  (5.22a)

and 

( ) ( ) ( ) ( )2
12/ 2 exp 2 exp 2A p p p wt D k a D R ik D f Dω α= ⎡− ⎤⎣ ⎦  (5.22b)

An example calculation to show the behavior of the transfer function in 
Eq. (5.22a) is given in Fig. 5.6. 

 There are other simple setups where one can develop explicit 
expressions for the transfer function ( )At ω  but we will not discuss those 
cases here. The two setups we have described will be particularly useful in 
setting up model-based measurements that allow us to characterize all the 
electrical and electromechanical components in an ultrasonic measurement 
system (see Chapter 7) and for determining material attenuation (see 
Appendix D). 
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5.4 The Acoustic Sources and Transducer on Reception 

The elements of the sound reception process are the receiving transducer, 
the cabling, and the receiver portion of the pulser/receiver as shown in 
Fig. 5.2 (a). In this section we will model the receiving transducer while in 
the next section we will discuss models of the cabling and receiver. By 
combining all of those components we will obtain the transfer function that 
describes the entire reception process (Fig. 5.2 (b)). 

 First, consider a receiving transducer B. We can model this 
transducer as a two port system where the input port is the acoustic port 
and the output port is the electrical port, i.e. we have reversed the inputs 
and outputs from the transmitting case as shown in Fig. 5.7. Note that 
along with this reversal we have also changed the direction of the velocity 
at the acoustic port and the current at the electrical port of the transducer. 
By inverting the transducer transfer matrix B⎡ ⎤⎣ ⎦T that describes B when it 
is used as a transmitter (see Eq. (4.5)), using the fact that det 1B⎡ ⎤ =⎣ ⎦T , and 
accounting for the sign changes on the velocity and current, we have 

22 12

21 11

,
B B

B B

F VT T
v IT T

⎡ ⎤⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦
 (5.23)

i.e. the diagonal terms are interchanged but the elements of the transfer 
matrix in Eq. (5.23) are exactly the same elements defined for the case 
where the transducer acts as a transmitter. To make use of this two port 
system model we need to know how the force and velocity inputs are 
related at the acoustic port and define the “driving” sources at this port.  
For the receiving transducer, the “sources” at the acoustic port are 
obviously the waves incident on the transducer as well as the waves 
scattered from the transducer by the interaction of the incident waves with 
the transducer (see Fig. 5.8), generating a normal velocity on the face of 
the transducer. We will again assume that the receiving transducer behaves 
as a piston and let the normal velocity on its face be ( )nv ω .  To see how 
these waves generate the input force, F, and the input velocity, v, for our 
two port model, we break up our original problem into the sum of the two 
problems shown in Fig. 5.9 [5.2]. In Problem I, the face of the transducer 
is held rigidly fixed. In this case we have the pressure from the incident 
waves, incp , as well as the pressure of the waves scattered from the 
“blocked” transducer face, blocked

scattp . The integral of the sum of these two 
pressures  over  the  transducer  face is just  the blocked  force, ( )BF ω , we  
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Fig. 5.8. The incident and scattered waves at a receiving transducer and the total 
force, ( )F ω , and normal velocity, ( )nv ω , that those waves produce on the face 
of the transducer. 

 
Fig. 5.9. The decomposition of the original problem shown in Fig. (5.8) into the 
sum of two auxiliary problems, labeled Problem I and Problem II. 



5.4 The Acoustic Sources and Transducer on Reception      79 

 
Fig. 5.10. (a) Representation of the waves received by a transducer as a blocked 
force source in series with the acoustic radiation impedance of the transducer, and 
(b) the representation of the acoustic sources and receiving transducer by a 
Thévenin equivalent voltage source and electrical impedance. 

defined earlier. In Problem II the incident waves are absent and we have 
just the pressure of the radiated waves, nv

radp , generated by the motion, 
( )nv ω , of the transducer face, which is taken as the same motion as in the 

original problem shown in Fig. 5.8. Let ( )sF ω  be the force acting on the 
face of the transducer in Problem II due to this motion of the transducer 
face. However, Problem II is just the same form as if the transducer were 
radiating waves when the transducer is used as a transmitter so the force, 

( )sF ω , acting on the transducer in this case is related to ( )nv ω  by 
( ) ( ) ( );B a

s r nF Zω = ( );B a
r

B acts as a transmitter. Since we have taken the velocity ( )v ω in our two 
port system as flowing into the system (Fig. 5.7) and ( )nv ω  is the normal 
velocity pointing outwards from the transducer (Fig. 5.8), we have 

( ) ( ) ( );B a
s rF Z vω ω ω= − . The total force, ( )F ω , acting on the transducer, 

is the sum of the forces in Problems I and II, so: 

ω v ω , where  Z ω  is the acoustic  radiation impe- 
dance of the receiving transducer B, the same impedance found when 
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Fig. 5.11. A model of the receiving transducer when the acoustic sources are 
removed. 

( ) ( ) ( ) ( ); .B a
B rF F Z vω ω ω ω= −  (5.24)

Equation (5.24) shows us explicitly how the force, F, and the velocity, v, 
are related at the acoustic port. This relationship is equivalent to the 
configuration shown in Fig. 5.10 (a), where a force “source”, ( )BF ω , is 
placed in series with an acoustic radiation impedance, ( );B a

rZ ω . Thus, we 
now have characterized the input side of the transducer. We see that the 
blocked force arises naturally in this model so that it is the quantity that 
makes sense to use in our transfer function definitions for both the 
acoustic/elastic processes and the reception process. From our previous 
discussion we see we could replace the blocked force source ( )BF ω by a 
source given by ( )2 incF ω , where incF  is the force due to the incident waves 
only (i.e. with the transducer absent). 

 Since there is at present no practical way to experimentally obtain 
the transfer matrix of the receiving transducer (see the discussion in 
Chapter 4), we need to replace the system shown in Fig. 5.10 (a) by an 
equivalent system whose elements we can determine. The system in 

theorem (Appendix B) allows us to replace that system with a single 
equivalent voltage source, ( )sV ω , and an equivalent electrical impedance, 

( )e
eqZ ω , as shown in Fig. 5.10 (b). Recall from Appendix B that to obtain 

the equivalent impedance we can short out (remove) the sources and 
examine the ratio between the input voltage and current for this config-
uration. When we do that for this system we find the configuration shown 
in Fig. 5.11, where the transducer is simply terminated at the acoustic  

( );B a
rZ ω . This configuration is port by its acoustic radiation impedance, 

’Fig. 5.10 (a) is an active system (a system with a source) so Thévenin s
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Fig. 5.12. The Thévenin equivalent circuit that characterizes a receiving trans-
ducer and its acoustic driving sources. 

identical to the situation when  this  transducer is being used as a transmitter  
and so if we measured the voltage and current ( ),in inV I  shown in Fig. 5.11, 
we would find an equivalent impedance that is the same as that when the 
transducer is being used as a transmitter, i.e. ( ) ( );e B e

eq inZ Zω ω=  where 
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; 11 12
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21 22
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ω +
=

+
 (5.25)

To obtain the equivalent voltage source, we need to examine the system 
shown in Fig. 5.10 (a) under open circuit conditions. For this case, we have 
from Eq. (5.23) 
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∞
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=

=
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where ( )V ω∞ is the open circuit voltage and the source for our Thévenin 
equivalent circuit, i.e. ( ) ( )sV Vω ω∞= . Placing Eq. (5.26) into Eq. (5.24) 
we find 

( )
( ) ( ) ( ) ( );

22 21

1 .B B a B
B r

V
F T Z T

ω
ω ω ω ω

∞

=
+

 (5.27)

This ratio is a receiving sensitivity called the open-circuit, blocked force 
receiving sensitivity, ( );

B

B
VFM ω∞  [5.3]. However, comparing Eq. (5.27) with 

Eq. (4.20) where we defined the sensitivity, ( )B
vIS ω , for this transducer 

when used as a transmitter, we see that: 
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( ) ( );
B

B B
VF vIM Sω ω∞ =  (5.28)

and it follows that the Thévenin equivalent voltage is just 

( ) ( ) ( ) ,B
s vI BV S Fω ω ω=  (5.29)

which reduces the transducer and its driving sources to the simple circuit 
shown in Fig. 5.12. Since in Chapter 7 we will show that it is possible to 
obtain B

vIS  and ;B e
inZ  by purely electrical measurements, those measure-

ments will determine completely the role of the transducer when acting as 
both a transmitter and receiver of sound.  

 The equality of the two sensitivities in Eq. (5.28) is not accidental. 
In fact, it is directly a consequence of the fact that the transducer is 
assumed to be a reciprocal device. Thus, Eq. (5.28) can be considered as a 
statement of transducer reciprocity (see [5.5] for further discussions of 
transducer reciprocity). This fact can be easily demonstrated by again 
starting from the transfer matrix of a transducer B when it is acting as a 
transmitter (Eq. (4.5)) and then obtaining the transfer matrix relationship 
of Eq. (5.23) but without assuming that the transducer is reciprocal ( i.e. let 
det B⎡ ⎤⎣ ⎦T
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 (5.30)

Thus, when we relate the force and velocity in Eq. (5.30) to the open-circuit 
receiving voltage, V ∞ , in place of Eq. (5.26) we obtain 
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which, when placed into Eq. (5.24), gives 
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where we have also used the definition of the transmitting sensitivity B
vIS  

given  by  Eq. (4.20). Equation (5.32) shows  that  the  equality  of  the two  
 

≠1). In place of Eq. (5.23) we then find during reception that 
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Fig. 5.13. A two port model of the receiving cable. 

sensitivities as stated by Eq. (5.28) is then equivalent to requiring 
det 1B⎡ ⎤ =⎣ ⎦T , i.e. the transducer must be reciprocal. 

5.5 The Cable and the Receiver in the Reception Process 

The role of the cable in the reception process is exactly the same as its role 
in the sound generation process. We can characterize the cable by a 2x2 
reciprocal transfer matrix, [ ]R , where (see Fig. 5.13) 

1 11 12 2

1 21 22 2

V R R V
I R R I

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎩ ⎭
 (5.33)

and the reversing of the current directions does not affect this relationship 
if the cable is reciprocal ( [ ]det 1=R ) and 11 22R R=  as found in a trans-
mission line model of the cable. If the cable does not exactly satisfy these 
requirements of the transmission line model then we can take such 
behavior into account by replacing Eq. (5.33) by  

[ ]
1 22 12 2

1 21 11 2

1 ,
det

V R R V
I R R I

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎩ ⎭R
 (5.34)

where ( )11 12 21 22, , ,R R R R  are the measured transfer matrix of the cable 
when it is transferring signals from the pulser/receiver to the transducer 
during the sound generation process. These components of the receiving 
cable transfer matrix can again be found through the electrical measure-
ments described in Chapter 3. 

 The receiver part of a pulser/receiver amplifies the received signals 
and can also  filter  them. Figure 2.1  shows these  types of  controls on the  
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Fig. 5.14. Model of a receiver as an electrical impedance and an amplification 
factor. 

 
Fig. 5.15. A measurement setup where the waves driving a receiving transducer 
are used as inputs to the receiver. The input voltage, ( )0 tν , and current, ( )0i t , are 
measured at the input port of the receiver, as is the receiver output voltage, ( )Rv t . 

right side of the front panel of a spike pulser and Fig. 2.4 shows similar 
gain and filtering settings that can be made on under computer control of a 
square wave pulser. Here, any filtering operations of the receiver will not 
be modeled as they can be easily applied to the unfiltered output at a later 
stage if desired. In many quantitative studies filtering may be detrimental 
because it removes frequency components that may contain useful 
information.  

 Since the receiver provides an electrical termination at one end of 
the cable, we will model the receiver as an electrical impedance, ( )0

eZ ω  
(Fig. 5.14). The amplifier action of the receiver will be modeled by an 
amplification (gain) factor, ( ) ( ) ( )0/RK V Vω ω ω= , as shown in Fig. 5.14, 
where ( )RV ω  is the output voltage frequency components of the receiver 
and ( )0V ω  is the corresponding voltage at the receiver's input port. By 
measuring the voltages and currents at the input and output of the receiver 
when it  is receiving  signals  from  a  receiving  transducer  (see Fig. 5.15) 
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Fig. 5.16. The measured magnitude (solid line) and phase (dashed line) of the 
electrical impedance, ( )0

eZ ω , of the receiver portion of a Panametrics 5052PR 
pulser/receiver when driven by a 2.25 MHz transducer in a pitch-catch mode. 

 
Fig. 5.17. The measured magnitude (solid line) and phase (dashed line) of the 
amplification (gain) factor, ( )K ω , of the receiver portion of a Panametrics 
5052PR pulser/receiver when driven by a 2.25 MHz transducer in a pitch-catch 
mode. 
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and calculating their Fourier transforms, the quantities ( )0V ω , ( ) ( )0 , RI Vω ω  
can be found for a specific gain setting of the receiver. From these 
measurements both the impedance, ( )0

eZ ω , and the amplification factor, 
( )K ω , can be obtained since 

( ) ( )
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( ) ( )
( )
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0

0
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ω
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 (5.35)

where a Wiener filter can be used to desensitize these divisions to noise 
(see Appendix C). Figure 5.16 shows the measured impedance of a 
Panametrics 5052PR pulser/receiver determined in this fashion when the 
pulser/receiver is operating in a pitch-catch mode. Fig. 5.17 gives the 
corresponding measured amplification (gain) factor. There is little 
structure seen in the impedance plot as a function of frequency. It is nearly 
a constant, having a value of approximately 500 ohms. This is consistent 
with the circuit diagrams of this particular instrument in a pitch-catch 
mode. The amplification factor also has little structure, having a value near 
10 which corresponds well with the 20dB gain setting at which the 
measurements were taken. Since the 2.25 MHz receiving transducer used 
in these measurements band limits the received response the results shown 
in Figs. 5.16 and 5.17 can only be reliably estimated over the bandwidth 
present. If the transducer used in such a calibration is the same as the one 
used in an actual inspection, this may not be an issue since the same 
bandwidth constraints will also be present in the inspection. Otherwise, we 
may need to excite the receiver with a wider bandwidth source or combine 
the measurements made with several different transducers to obtain 

( ) ( )0 ,Z Kω ω  over a larger range of frequencies. 
 In a pulse-echo mode the received signals must pass through some 

of the circuits of the pulser section so it is not surprising that in this case 
the properties of the receiver are affected by the pulser settings. 
Figure 5.18 (a) shows the behavior of the amplification factor, ( )K ω , of a 
spike pulser/receiver computed at two different damping settings and 
Fig. 5.18 (b) gives the receiving impedance, ( )0

eZ ω , as measured over a 
range of different damping settings. The receiver was driven in these cases 
by waves received from a broadband 5 MHz transducer in a pulse-echo 
setup of the type shown in Fig. 5.5. 
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Fig. 5.18. (a) Magnitude of the amplification factor for the receiver section of a 
spike pulser/receiver in a pulse-echo mode obtained at a damping setting of 2 
(solid line) and a damping setting of 9 (dashed line). (b) The equivalent 
impedance of the spike pulser/receiver at a range of damping settings from 0 to 7 
(the arrow indicates the trend of the curves for changing damping settings). 

 Figure 5.19 shows the results of measurement of the amplification 
factor and receiving impedance of a square wave pulser/receiver when 
operated in a pitch-catch mode while Fig. 5.20 shows these same para-
meters when the square wave pulser is operated in a pulse-echo mode. In 
both cases the receiver was being driven by a broadband 5 MHz transducer. 
In the pulse-echo mode it can be seen that there is some dependency of the 
square wave receiver parameters on the pulse width setting in pulse-echo 
but these changes are not large. 
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Fig. 5.19. (a) The magnitude (solid line) and phase (dashed line) of the amplification 
(gain) factor of the receiver section of a square wave pulser/receiver in a pitch-catch 
mode. (b) The magnitude and phase of the equivalent impedance of the receiver 
section of a square wave pulser/receiver in a pitch-catch mode. 

5.6 A Complete Reception Process Model 

By combining our transducer, cabling and receiver models we have the 
complete reception process shown in Fig. 5.21. From Fig. 5.21 we have 

;
2 2

B B e
vI B inS F V Z I− =  (5.36)
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Fig. 5.20. (a) The magnitude of the amplification factor of the receiver section of 
a square wave pulser/receiver in a pulse-echo mode obtained at a pulse width 
setting of 10 (solid line) and a pulse width setting of 50 (dashed line). (b) The 
magnitude of the receiving impedance of the receiver section of a square wave 
pulser/receiver in a pulse-echo mode for a range of pulse width settings (the arrow 
indicates the trend of the curves for changing pulse widths). 

02 22 12

02 21 11

VV R R
II R R
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 (5.37)

 

0RV K V=  (5.38)
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Fig. 5.21. A model of the entire sound reception process. 

 
 

Fig. 5.22. (a) All the electrical and electromechanical elements of both the sound 
generation and sound reception parts of an ultrasonic measurement system, and (b) 
their representation by equivalent  sources, impedances, sensitivities, amplification 
factors, and transfer matrix elements. All the wave propagation and scattering 
processes are shown in terms of the acoustic/elastic transfer function, ( )At ω . 
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0 0 0 ,eV Z I=  (5.39)

where the components of the cabling transfer matrix are those obtained 
considering ( )0 0,V I as the input side of the cabling and we have assumed 

[ ]det 1=R (i.e. the cable is reciprocal) but have not assumed that 11 22R R=  
(see the discussion leading to Eq. (5.34)). Using Eqs. (5.36 - 5.39) it is 
easy to show that the transfer function for this entire reception process, 
( )Rt ω , is given by [5.4] 

( ) ( )
( ) ( ) ( ); ;

11 12 21 22

e B
R o vI

R B e B e e
B in in o

V K Z St
F Z R R Z R R Z

ω
ω

ω
= =

+ + +
 (5.40)

in terms of all the parameters defined earlier. Recall the transfer function 
for the sound generation process, ( )Gt ω , was given by Eq. (4.21) as 

( ) ( )
( ) ( ) ( )

;

; ;
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.
A a A
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G A e A e e
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V Z T T Z T T Z
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 (5.41)

All the electrical and electromechanical components in an ultrasonic 
measurement system are shown in Fig. 5.22 (a). The corresponding models 
are shown in Fig. 5.22 (b). It can be seen from Fig. 5.22 (b) that both the 
complex sound generation and reception processes models are combined in 
very similar ways, reflecting the close similarity between the sound 
generation and receptions transfer functions in Eqs. (5.40) and (5.41). 
Figure 5.23 shows an example where the magnitude and phase of a sound 
reception transfer function, ( )Rt ω , was experimentally determined by char-
acterizing all the components contained in Eq. (5.40). In this case the receiver 
was the receiver section of a Panametrics 5052 PR pulser/receiver (measured 
at a specific gain setting). The cabling consisted of 1.83 m of flexible 50 
ohm coaxial cable connected to a 0.76 m fixture rod. The rod also contained 
internal cabling and was terminated by a right-angle adapter to which the 
transducer was connected. The transducer was a relatively broadband 6.35 mm 
diameter, 5 MHz immersion transducer. The sensitivity and impedance of 
the transducer were obtained by the methods which will be discussed in 
Chapter 6. 

 In Chapter 7 it will be shown that these sound generation and 
reception  transfer  functions  can  be   combined  with  the  pulser  voltage  
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Fig. 5.23. A sound reception transfer function obtained experimentally. (a) 
Magnitude versus frequency and (b) phase versus frequency. 

source term, ( )iV ω , to form what is called the system function. It will also 
be shown in that Chapter that the system function can be obtained either by 
measuring of all its electrical and electromechanical components or by 
performing a single voltage measurement in a calibration setup. Thus, the 
acoustic/elastic transfer function, ( )At ω , shown in Fig. 5.22 is the only 
remaining part of the ultrasonic measurement system that is needed to 
completely characterize an entire ultrasonic measurement system. Since 
this acoustic/elastic transfer function involves the wave fields inside of 
solid components that are being inspected, it is not practical to measure 
this transfer function experimentally. Instead, accurate beam models and 
flaw scattering models are needed to describe ( )At ω for an ultrasonic flaw 
measurement system. In Chapters 8-10 such ultrasonic beam models and 
flaw scattering models will be described in detail. In Chapter 11 these 
beam models and scattering models will be combined with a general 
reciprocity relationship to obtain the acoustic/elastic transfer function for 
many ultrasonic flaw measurement setups. 
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5.8 Exercises 

1. Using Eqs. (5.21) and (5.22b) write a MATLAB function t_a that 
computes the acoustic/elastic transfer function for the pulse-echo setup 
shown in Fig. 5.5, where the fluid is water at room temperature. The calling 
sequence for this function should be: 

 
>> t =t_a(f, a, d, d1, d2,c1,c2); 

 
where f is the frequency (in MHz), a is the radius of the transducer (in 
mm), d is the distance from the transducer to the plane surface (in mm), d1 
is the density of the fluid (in gm/cm3), c1 is the compressional wave speed 
of the fluid (in m/sec), d2 is the density of the solid (in gm/cm3), and c2 is 
the compressional wave speed of the solid (in m/sec).  

 Using this function, obtain a plot of the magnitude of this transfer 
function versus frequency similar to Fig. 5.6 for a = 6.35 mm, d = 100 mm, 
d1 = 1.0 gm/cm3, c1 = 1480 m/sec, d2 = 7.9 gm/cm3, c2 = 5900 m/sec 
(steel). Let the frequencies range from 0 to 20 MHz. On the same plot, 
show the magnitude of this transfer function versus frequency when the 
attenuation of the fluid is neglected, so that the effects of attenuation on 
this function can be demonstrated. 

foundations. Research in Nondestructive Evaluation 14: 141-176  




