
6 Transducer Characterization 

The sending and receiving transducers are some of the most important 
parts of an ultrasonic measurement system and also some of the most 
challenging components to completely characterize. To date there is no 
practical way to determine the complete transfer matrix components of a 
transducer, but as we have shown the role of the transducer as both a 
transmitter and a receiver in an ultrasonic measurement can be completely 
described in terms of its electrical impedance and sensitivity.  In this 
Chapter we will describe methods to obtain a transducer’s electrical imped-
ance and sensitivity and also obtain a transducer’s effective geometrical 
parameters such as effective radius and effective focal length.  

6.1 Transducer Electrical Impedance 

The transducer electrical impedance, ( );A e
inZ ω , of a given transducer A is 

relatively simple to determine in the calibration setup shown in Fig. 6.1. 
The transducer is connected by a short cable to the pulser and the input 
voltage, ( )1v t , and current, ( )1i t , are measured at point a as shown in 
Fig. 6.1 for the short time that the pulser is exciting the transducer and 
generating waves in the fluid but before any reflected waves have arrived 
back at the transducer. Taking the Fourier transform of these 
measurements to obtain ( ) ( )1 1,V Iω ω  then gives the impedance directly 
since for a short cable the transfer matrix of the cable is just the unit matrix 
and ( ) ( )1 inV Vω ω= , ( ) ( )1 inI Iω ω= , where ( ) ( ),in inV Iω ω  are the voltage 
and current directly at the transducer electrical input port (point b in 
Fig. 6.1) and 

( ) ( )
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; .inA e
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in

V
Z

I
ω

ω
ω

=  (6.1)

As discussed earlier for other measurements of this type, in implementing  
Eq. (6.1) it may be  necessary to use a Wiener filter to desensitize the division 
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Fig. 6.1. A calibration setup for measurement of a transducer's electrical 
impedance. 

process to noise (see Appendix C). The voltage measurement can be made 
by inserting a T-connector in the cable and measuring the voltage on the 
connector while the current can be measured directly by tapping the cable 
and using a commercial current probe (Tektronix CT-2, Tektronix, Inc., 
Wilsonville, OR) attached to the central conductor of the cable. A current 
probe of this type is shown in Fig. 6.2. If it is not practical to use a very 
short cable, then the measurements at point a must be compensated for 
cabling effects. This is easy to do since in this case 
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 (6.2)

where [ ]T is the transfer matrix for the cable between points a and b in 
Fig. 6.1 (considering a as the input port and b the output port). If the 
cabling acted as an ideal reciprocal device the determinant of the transfer 
matrix would be unity, i.e. [ ]det 1=T . In practice, the measured determinant 
is normally close to but not identically unity so those small differences are 
accounted for by using Eq. (6.2) with the determinant calculated directly 
from the measured component values. If the cable transfer matrix has been 
measured, we can use Eq. (6.2) to determine ( ) ( ),in inV Iω ω  from 
( ) ( )1 1,V Iω ω  and use Eq. (6.1) to obtain the impedance.  
 Figure 6.3 shows a measured transducer impedance plotted versus 

the frequency, f. To first order the magnitude of the impedance varies like 
1/f and the phase is approximately 90 degrees. Figure 6.4 shows the 
corresponding  frequency  response of  a  capacitor, which  we see  has  the  
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Fig. 6.2. A probe for measuring the current in a cable. 

 
Fig. 6.3. The measured electrical impedance of a transducer showing the magni-
tude of the impedance (solid line) and the phase (dashed line) versus frequency. 

same overall behavior. This is not surprising since a piezoelectric crystal 
that is plated on its faces will act to first order much like an ordinary 

 
capacitor. We cannot always expect to see purely a capacitor-like behavior  
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Fig. 6.4. The magnitude (solid line) and phase (dashed line) of the impedance, 

( )1/ 2eZ i f Cπ= − , of a capacitor versus frequency,  f , where  C is the capacitance. 

for the impedance, however, if a commercial transducer contains additional 
internal electrical “tuning” elements. 

6.2 Transducer Sensitivity 

With a new pulse-echo technique that has been recently developed, 
determining the transducer sensitivity of transducer A, ( )A

vIS ω , is only 
slightly more involved than finding the impedance [6.1]. In this case we 
use a calibration setup such as the one shown in both Figs. 6.5 and 6.6 
where the waves from the transducer are reflected from a solid block at 
normal incidence and the acoustic/elastic transfer function, ( )At ω , is 
known (see Eq. (5.18)). We first measure the input voltage, ( )1v t , and 
current, ( )1i t , when the transducer is firing and before any reflected waves 
arrive at the transducer (Fig. 6.5). After a time delay of approximately 

12 / pt D c= , where 1pc is the wave speed in the water, we measure the 
received voltage, ( )2v t , and current, ( )2i t  generated by the waves 
reflected from the block (Fig. 6.6). In Fig. 6.7 we show the sound 
generation process model corresponding to Fig. 6.5, where the frequency 
components  of  ( ) ( )1 1,v t i t   at  point  a  are  labeled ( ) ( )1 1,V Iω ω  and  the  
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Fig. 6.5. Measurement of voltage and current when transducer A is radiating 
waves. 

 
Fig. 6.6. Measurement of voltage and current when transducer A is receiving the 
waves reflected from the block. 

port ( ) ( ),in in ω

( ) ( )1 1,v t i t must by physical necessity be made outside the water tank so 
that there may be a non-negligible length of cable between the 
measurement point a and the electrical port of the transducer (point b). 
Again, however, if the transfer matrix [T] of the cabling is known, the 
voltages and currents measured in these two setups can be related directly 
to the corresponding voltages and currents at the transducer electrical input 
port. During the sound generation process, we can again use Eq. (6.2). 
Note that ( )inV ω  and ( )inI ω here are identical to those used in Eq. (6.1) so  

are labeledV Iω . It is likely that the measurements of 
frequency components of the voltage and current at the electrical input 
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Fig. 6.7. The generation process model for the measurement of voltage and 
current when transducer A radiates waves. 

 
Fig. 6.8. The reception process model for the measurement of the voltage and 
current when transducer A receives waves reflected from the block. 

that the impedance can also be calculated directly in the setup of Fig. 6.5 
from ( ) ( ) ( ); /A e

in in inZ V Iω ω ω= . In Fig. 6.8 we show the sound reception 
process model corresponding to Fig. 6.6 where the frequency components 
of ( ) ( )2 2,v t i t  at point a are labeled ( ) ( )2 2,V Iω ω  and the frequency 
components of the voltage and current at the electrical input port are 
labeled ( ) ( ),T TV Iω ω . To compensate for the cabling in this case we note 
that ( ),T TV I−  in the reception process (Fig. 6.8) replaces ( ),in inV I  in the 
generation process (Fig. 6.7) and similarly  ( )2 2,V I  replaces ( )1 1,V I  so we 
find 
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 (6.3)

Note that 1I  and 2I  are taken to be in the same direction in both cases 
since  these  currents  are  both  measured  by  the current probe in Fig. 6.2. 
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Fig. 6.9. The measured sensitivity of a 5MHz, 6.35 mm radius planar transducer. 
The magnitude of the sensitivity versus frequency (solid line) and phase versus 
frequency (dashed line). 

 
Fig. 6.10. The measured sensitivity of a transducer as determined with compensation 
for cabling effects (solid line) and where cabling effects are ignored (dash-dot line). 
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This probe is directional and is oriented so that it measures the current 
flowing into the cable at point a during both the sound generation and 
reception processes (see Figs. 6.5 and 6.6). 

Now, consider determining the sensitivity from these measurements. 
From Fig. 6.8 we have 

;A A e
vI B in T TS F Z I V= +  (6.4)

and also 

;

t tB
B in

t t in
A a A

A r vI in

F vFF I
F v I
t Z S I

=

=

 (6.5)

so that by combining these two relations and using ; /A e
in in inZ V I=  we obtain 

; 2 .A in T T in
vI A a

A r in

V I V IS
t Z I

+
=  (6.6)

Since we know the acoustic/elastic transfer function for this setup and we 
can take the acoustic radiation impedance as its high frequency value 

;
1 1

A a
r p AZ c Sρ= , measurements of ( ) ( ) ( ) ( ), , ,in in T TV I V Iω ω ω ω  are suffi-

cient to determine the transducer sensitivity. Since Eq. (6.6) involves 
division of frequency domain values, a Wiener filter can be used here also 
to handle noise issues.   

 Figure 6.9 shows a plot of a measured sensitivity. The dimensions 
of the sending sensitivity A

vIS  are velocity/current while the open-circuit  
receiving sensitivity, ;

B

A
VFM ∞ , has the dimensions of voltage/force. Since these 

two sensitivities are equal we can use either set of dimensions. We choose 
here to use Volts/Newton in the SI system to characterize these sen-
sitivities. Figure 6.10 shows the differences in the measured sensitivity 
obtained when cabling effects are accounted for and when they are 
ignored. In most immersion setups such as the one used here there will 
likely be more than a meter of cable between where the voltages and 
currents are measured and the transducer electrical port, so that the cabling 
effects cannot be ignored, as shown in Fig. 6.10. It is important to realize 
that when the measured signals and modeled parameters are combined 
they determine the square of the transducer sensitivity, not the sensitivity 
itself. This can be seen from Eq. (6.6) if we rewrite it as 
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Fig. 6.11. A generic pitch-catch setup that can be used with three transducers (in 
various pairs) to determine the sensitivity of one of those transducers. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2
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in T T inA
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Thus, when the square root is taken of these values there is always an 
ambiguity about the sign that should be chosen. In a pulse-echo 
experiment, the sign is immaterial in predicting the measured voltage 
output of the system since the output voltage is proportional to the 
sensitivity squared (same transducer is both sender and receiver). In a 
pitch-catch experiment, however, two different transducers are used and 
this ambiguity in sign could affect the polarity of the predicted output 
voltage. There is no way to resolve the sign with the procedures discussed 
here, but there are two ways to deal with this issue. In a pitch-catch 
situation, the measured sensitivities of the two transducers involved could 
be combined with measurements of the other system components to 

( )
measurement setup where the acoustic/elastic transfer function, ( )At ω  was 
known (such as the setup shown in Fig. 5.4) then the output voltage, 

( ) ( ) ( )R AV s tω ω ω= could be obtained and Fourier transformed into the 
time domain and compared to the experimentally observed signal. If the 
predicted polarity of the time domain signal was correct (i.e. agreed with 
the experimental voltage), one could say that the signs of the two 
sensitivities were consistent. If the polarities did not agree, one could 
change the sign on one of the sensitivities to make them consistent. To 
determine the sign in a more fundamental  manner one could instead  place  

predict the system function s ω . If the transducers were placed in a  
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Fig. 6.12. A model for the generic pitch-catch setup of Fig. 6.11, showing the 
transmitting and receiving transducers and the acoustic/elastic transfer function 
that defines the wave processes occurring between them. 

Fig. 6.13. Three separate pitch-catch setups and measurements for determining the 
sensitivity of transducer A. In this case we have assumed the transducers are all of 
the same diameter and the distance, D, is fixed for all three setups. 

the transducer in a setup where the input current driving the transducer was 
measured as well as the pressure in the transducer wave field (such as the 
on-axis pressure measured with a separate calibrated probe). Such a 
measurement setup would only be needed, however, if it was essential to 
predict in an absolute sense the generated pressure wave field.  

 There exists another reciprocity-based measurement procedure to 
determine the open-circuit receiving sensitivity, ;

B

A
VFM ∞ , that is commonly 

described in the acoustics literature [6.2-6.10]. That method requires one to 
make measurements with three different transducers in three separate 
pitch-catch setups of the generic type shown in Fig (6.11) where the 
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transmitting transducer is transducer X and the receiving transducer is 
transducer Y. The input current to transducer X measured at point P in 

XI  and the open-circuit voltage measured at point Q 
received by transducer Y due to the waves generated by transducer X is 
labeled YXV∞ . If the effects of cabling between point P and the transmitting 
transducer X and between transducer Y and point Q are both negligible, 
then the measured current at the input port of transducer X is the same as 

XI  and the open-circuit voltage at Q is the same as the open-circuit voltage 
directly at the receiving transducer electrical port. In this case the sound 
generation and reception model for the pitch-catch setup of Fig. 6.11 is as 
shown in Fig. 6.12, Note that the acoustic/elastic transfer function, At , for 
this pitch/catch configuration is known for a pair of circular, plane piston 
transducers (see Eq. (5.10) for the case where the transducers are of dif-
ferent size, or Eq. (5.12) when the transducers are of the same size). Since 
the open-circuit voltage at the receiving transducer electrical port is just  
the equivalent source term for transducer Y given by ;

B

Y
B VFF M ∞  (see Chapter 5) 

we find 
;

;

; ; .

B
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∞

∞

=

=
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 (6.8)

As shown in Chapter 5 the transmitting sensitivity Z
vIS  and the open-circuit 

receiving sensitivity, ;
B

Z
VFM ∞ , are the same for any reciprocal transducer Z 

(where Z  = X or Y), so we can express the voltage over current ratio in 
Eq. (6.8) in terms of either of these sensitivities. We will choose the open-
circuit receiving sensitivity here, as that is the choice normally made in the 
acoustics literature. Then Eq. (6.8) becomes 

; ; ; .
B B

YX
X a X Y

A r VF VFX

V t Z M M
I

∞ ∞∞ =  (6.9)

Now, apply Eq.(6.9) to the three separate pitch-catch setups involving 
three transducers A, B, and C shown schematically in Fig. 6.13, where we 
have assumed that the distance, D, between transducers is held fixed for all 
three setups and the diameters of all three transducers are the same so that 
there is only one  acoustic/elastic transfer function, At , for all three setups. 

Fig. 6.11  is labeled 
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In setup one transducer X = C is firing and transducer Y = A is receiving 
while for setup two transducer X = C again is firing and transducer Y  = B 
is receiving. In setup three, transducer X = B is firing and transducer Y = A 
is receiving. Applying Eq. (6.9) to each of these cases individually we 
have 

; ; ;

; ; ;

; ; ; .

B B

B B

B B
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 (6.10)

From Eq. (6.10) we see we can eliminate the sensitivities of transducers B 
and C by considering the particular combination of ratios 
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 (6.11)

so solving for the open-circuit receiving sensitivity of transducer A we find: 

;
;

1 .
B

AB AC
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VF vI BC B B a
r A

V VM S
V I Z t
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∞

= =  (6.12)

Equation (6.12), which is similar to the expression commonly found in the 
acoustics literature, is very much like Eq. (6.6) for our pulse-echo method. 
Instead of the two voltage and two current measurements needed for the 
pulse-echo method, Eq. (6.11) requires that we make three open-circuit 
voltage methods and one current measurement from the three pitch-catch 
setups of Fig. 6.13. For acoustic transducers operating at kHz frequencies 
or less, Eq. (6.12) has been commonly used in the acoustics community for 
many years to obtain transducer sensitivity. In fact, for transducers at those 
frequencies there exists a commercially available calibration system that 
can implement the measurements required in Eq.(6.12) and extract the 
sensitivity [6.11]. Dang. et al. [6.12] have also used this three transducer  
method to obtain the sensitivity of  NDE transducers operating at MHz 
frequencies. However, Dang et al. [6.12] found that at MHz frequencies it 
was important to consider the effects of the cabling present. They defined a  
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Fig. 6.14. The magnitude and phase of the sensitivity, vIS , of a 5 MHz, 6.35 mm 
diameter planar transducer as calculated by the pulse-echo method (solid line) and 
the three transducer pitch-catch method (dashed line). 

generalized sensitivity that took into account those cable effects and 
applied a modified version of Eq. (6.12). 

 The three transducer pitch-catch method is also a viable approach 
to obtaining sensitivity but the pulse-echo method has several advantages. 
First, the three-transducer method requires one to make measurements in 
three separate pitch-catch setups while only one setup is needed in the 
pulse-echo method. This makes the pulse-echo method faster and avoids 
any delicate re-alignment issues for the transducers. Second, we note that 
both the pulse-echo and the three transducer pitch-catch procedure for 
obtaining sensitivity are model-based approaches. This means that the 
model assumptions made on transducer behavior must be satisfied for all 
three transducers for the three transducer method but only for the 
transducer whose sensitivity is to be determined for the pulse-echo 
method. Figure 6.14 shows the sensitivity of a 5 MHz, 6.35 mm diameter 
planar transducer obtained via either the pulse-echo method or the three-
transducer pitch-catch method. It can be seen that there is little difference 
between the results obtain with either method over the bandwidth of the 
transducer.  

 There is also a pulse-echo technique for determining sensitivity 
called the self-reciprocity method that has been developed in the acoustics 
literature [6.13-6.17]. The  self-reciprocity  method  applies  Eq. (6.9)  to  a  
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Fig. 6.15. A circular piston transducer of radius a receiving the waves reflected 
from the front surface of a spherical reflector located on the central axis of the 
transducer. 

pulse-echo setup involving a single transducer, A, and solves for the 
sensitivity of A in the form 

;
;

1 ,
B

AA
A A

VF vI A A a
A r

VM S
I t Z

∞ ∞= =  (6.13)

where AAV∞  is the open-circuit voltage received by A due to the waves 
generated by A and AI  is the current driving transducer A when it is 
radiating into the fluid. Equation (6.13) is very similar to our pulse-echo 
expression, Eq. (6.6). In fact under open-circuit conditions 0TI =  in 
Eq. (6.6) and that equation simply reduces to Eq. (6.13). However, in order 

actual conditions present in a pulse-echo setup, so it is significantly more 
convenient to use than Eq. (6.13). 

6.3 Transducer Effective Radius and Focal Length 

It would appear that geometrical parameters such as the transducer radius 
and focal length are parameters that are well-defined and need no experi-
mental determination. In practice, however, it has been found that if one 
simply uses these parameters (as specified by the transducer manufacturer) 

to apply Eq. (6.13) directly one needs to measure the received voltage 
under open-circuit conditions. Since inherently in a pulse-echo setup 

Equation (6.6) can be applied directly from measurements taken under the 
or special matching networks to infer the open-circuit response. 

the transducer will be loaded by the receiver and cabling on reception, this 
has forced some authors to use rather complicated measurement systems 
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Fig. 6.16. The magnitude of the on-axis normalized pressure versus normalized 
distance /z N  for a ½ inch diameter circular piston transducer radiating waves at 
5 MHz  into a fluid, where N is the near field distance given by 2 /N a λ= . As 
shown the last on-axis null occurs at one-half a near field distance. 

in transducer beam models, one often does not get good agreement with 
theory when the behavior of the transducer beam is examined experi-
mentally [6.18], [Fundamentals]. This is perhaps to be expected since, for 
example, a transducer crystal cannot have piston-like behavior over its 
entire face as the crystal is supported and constrained at its edges. Thus, 
one might define an effective radius for the transducer where a piston 
model agrees better with experiments. Similarly, the geometrical focal 
length of a focused transducer is determined in reality by a number of 
other unknown parameters such as the material properties and geometry of 
the focusing lens. Again, one might deal with these unknowns by defining 
an effective focal length that matches experiments.  

 First, consider the problem of determining the effective radius of a 
circular, planar immersion transducer. One configuration that can be used 
to determine the effective radius of this transducer is shown in Fig. 6.15. A 
spherical reflector is placed on the axis of the transducer and the 
transducer is scanned so that the sphere remains on the transducer's central 
axis at different distances, z. At each value of z, iz z=  the received time 
domain voltage response, ( ),R iv t z , from the front surface of the sphere is 
recorded and Fourier transformed to obtain its spectrum, ( ),R iV f z . Then 
the magnitude of these frequency domain responses are plotted versus z at 
a single fixed frequency, 0f , which is usually taken near the center 
frequency  of  the  transducer. Since  the  front  surface  reflection from the  
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Fig. 6.17. The magnitude of the normalized on-axis pressure versus normalized 
distance z/R for a spherically focused piston transducer of radius a and 
geometrical focal length, R, radiating into water. The location of the null and 
maximum that are used in the determination of the effective focal length and 
radius are shown. 

 

sphere is proportional to the square of the on-axis pressure of the transducer, 
the magnitude of the frequency domain plot of ( )0 ,R iV f z has the same 
behavior as the on-axis pressure squared of the transducer when it is driven 
harmonically at frequency 0f  [Fundamentals]. In Chapter 8, an explicit 
expression for the on-axis pressure of a circular plane piston transducer at 
a fixed frequency is obtained analytically. This on-axis pressure is plotted 
in Fig. 6.16 versus the non-dimensional distance z/N, where 2 /N a λ=  is 
called the near field distance and 0/pc fλ =  is the wave length. It can be 
seen that in the region near the transducer there are a series of maxima and 
nulls. The last null (the one farthest from the transducer) can be shown to 
be located at the distance 2

min / 2z a λ= . Since this is a null of the pressure 
field the squared pressure will also have a null at this position, as will 

( )0 ,R iV f z . If, from the plot of  ( )0 ,R iV f z  versus z one obtains an estimate 
of the distance to that null then one can define the corresponding effective 
radius, effa , as 

min2 .effa zλ=  (6.14)



6.3 Transducer Effective Radius and Focal Length      111 

This last on-axis null position is used because it is relatively simple to 
determine experimentally and does not require knowledge of the absolute 
amplitude of the on-axis pressure wave field. Some authors have used 
multiple on-axis nulls to obtain a better estimate of the effective radius or 
have used a least squares fitting to theory of many points, both on- and off-
axis, in the transducer wave field to determine effa . All of these methods 
have the same goal – namely to obtain an estimate of a radius value that 
will match the theoretical wave field better than simply using the nominal 
radius. In principle the determination of effa  in this fashion can be done at 
any fixed frequency and the result should not depend on the frequency 
chosen. In practice some variations of the effective radius value with 
frequency are found [Fundamentals]. Often these variations are not severe 
and a simple averaging of effa values over the bandwidth of the transducer 
gives good results.  

For a spherically focused transducer one can use the same setup 
shown in Fig. 6.15 and the same procedures to obtain ( )0 ,R iV f z , which is 
proportional to the on-axis pressure squared wave field, but in this case we 
must obtain estimates of both the effective radius, effa ,  and the effective 
geometrical focal length, effR [6.19], [6.20]. Figure 6.17 shows a plot of a 
model prediction of the on-axis pressure of a circular, spherically focused 
piston transducer radiating into water. Again one sees nulls and maxima in 
the region close to the transducer and a very large peaked response due to 
focusing. Only the distance, minz , to the last on-axis null can generally be 
obtained reliably, however, since at other nulls the response rapidly gets 
very small. One could also measure the distance, maxz , to the maximum 
value of ( )0 ,R iV f z , which also occurs when the magnitude of the 
pressure is a maximum. In this case, models show that the effective focal 
length is given in terms of minz   and maxz by [Fundamentals] 

( )max
max min

,
/eff

xR z
x z z
π

π
⎧ ⎫−⎪ ⎪= ⎨ ⎬−⎪ ⎪⎩ ⎭

 (6.15)

where x is a solution of the transcendental equation 
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Once the effective focal length is found from these relations the effective 
radius is given by 

min

min

2
,eff

eff
eff

z R
a

R z
λ

=
−

 (6.17)

which we see reduces to the planar transducer case (Eq. (6.14)) when 
effR →∞ . In practice it has been found that the location of the distance to 

the transducer peak response, maxz , is difficult to determine precisely and the 
results for effR  are sensitive to those errors. It has been found better to use 
a range of estimates for maxz  and choose the best combination of effR  and 

effa  values that match (in a least squares sense) the predicted and measured 
on-axis pressure values around the transducer focus. The details of these 
procedures can be found in [6.20]. There are other fitting methods that can 
be used to obtain these effective parameters but we will not discuss those 
alternatives here. As in the planar case, the effective parameters have been 
found to depend somewhat on the frequency one chooses, so one might 
need to take an average of their values over the bandwidth of the 
transducer. 

Table 6.1. Effective radii and focal lengths found for some commercial 
transducers. 

Transducers     Manufacturer's    
          Specs 
   R                    a 
(mm)              (mm) 

       Effective  
      Parameters 
   effR                effa  
 (mm)              (mm) 

Center Frequency 
         (MHz) 

A 76.2                 4.76 134.7               4.51            10 
B 76.2                 6.35 207.4               5.56              5 
C 76.2                 4.76   74.5               4.69            15 

 
 Equation (6.15) shows that the effective geometrical focal length, 

effR , is always larger than maxz . The distance maxz , which is the distance to 
the maximum on axis pressure, is often called the location of the “true 
focus”. The difference between effR  and maxz occurs because of wave 
diffraction effects at finite frequencies. It is only in the limit when the 
frequency goes to infinity that max min/ 1z z → , and one finds maxeffR z= . 
 Table 6.1 gives some example values of the effective parameters 
obtained for several commercial transducers. It can be seen that in some 
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cases the effective values are considerably different from the nominal 
values given by the transducer manufacturer. Those differences can lead to 
large errors if the nominal values are used in model calculations. 
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6.5 Exercises 

1. The MATLAB function transducer_x(z) returns the time-domain sampled 
voltage received from a spherical reflector in water (c = 1480 m/sec) 
located at a distance z (in mm) along the axis of a planar transducer as 
shown in Fig. (6.15). There are 1024 samples in this waveform, each 
separated by a sampling time interval ∆t =.01 µsec. First, let z be the 
vector of values: 

 
>> z = linspace (25, 400, 100); 

 
Use this set of values in the transducer_x function, i.e. evaluate 

 
>> V = transducer_x(z); 

 
The matrix V will contain 100 waveforms calculated at each of these 

z-values. Use FourierT to generate the frequency spectra of these waveforms. 
Note that FourierT can operate on all of these waveforms at once as long 
as they are in columns (which is the case) and will return a matrix of the 
corresponding spectra, also in columns. Examine the magnitude of some of 
these spectra versus frequency to determine the range of frequencies over 
which there is a significant response. Pick one frequency value near the 
center frequency in this range and plot the magnitude of the spectra at that 
value versus the distance z.  
 Locate the last on-axis minimum in this plot and use Eq. (6.14) to 
determine the effective radius of this transducer. Try using a different fre-
quency value within the transducer bandwidth to determine the effective 
radius. Does your answer vary with the frequency chosen?  
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