
8 Transducer Sound Radiation 

In this Chapter, we will examine models that can describe the radiated 
sound field generated by an ultrasonic transducer and some of the 
important parameters that govern the behavior of that field. We will 
demonstrate most of these results for immersion transducers but many of 
the concepts introduced also are valid for contact transducers as well. We 
will also discuss some of the major differences between immersion and 
contact transducers. 

8.1 An Immersion Transducer as a Baffled Source 

Figure 8.1 (a) shows a circular planar (non-focused) immersion transducer 
radiating into a fluid medium, where we have placed the face of the 
transducer in the x-y plane so that it is pointing in the positive z-direction. 
When this transducer is driven by the pulser the underlying piezoelectric 
crystal will move. That motion, in turn, will produce a transient velocity 
field on the face of the transducer which we will assume is a normal 
motion (in the z-direction). This velocity field we will write as ( ), ,zv x y t . 
Since the pulser drives the transducer with a very short voltage pulse, the 
motion of the face of the transducer that is generated by this excitation will 
also be a short time duration pulse. However, we will not model this 
mechanical motion directly, but instead will deal with its Fourier 
transform, ( ), ,zv x y ω . Such a frequency domain response can alternately 
be viewed as the result of assuming that the velocity field on the face of 
the transducer has a harmonic motion given by ( ) ( ), , expz zv v x y i tω ω= −  
which generates a radiated sound pressure field in the fluid given 
by ( ) ( ), , , expp x y z i tω ω− . Since all the variables for harmonic motion 
problems have the same common time factor, ( )exp i tω− , it is customary 
to drop this time factor and assume it implicitly, a convention we will 
often follow here.  
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Fig. 8.1. (a) A planar immersion transducer radiating waves into a fluid produced 
by a harmonic velocity field ( ), ,zv x y ω on its face, and (b) a transducer model 
consisting of the same velocity field in (a) surrounded by a motionless baffle on 
the z = 0 plane. 

Most transducer models do not directly deal with the geometry of 
Fig. 8.1 (a) but instead consider the alternate geometry of Fig. 8.1 (b) 
where it is assumed that there is an infinite plane at z = 0 over which the 
velocity is specified [Fundamentals]. On the surface, S, of the transducer, 
which lies in this plane, the velocity is given as ( ), ,z zv v x y ω= . For the 
remainder of the plane one takes 0zv = . These conditions would correspond 
to having the transducer face embedded in an infinite, motionless, plane 
baffle. This modified geometry should still represent well our original 
problem, however, since the transducer will generate a sound field that is 
significant only in the region ahead of the transducer anyway and the 
actual fields in the fluid on the plane z = 0 outside of the surface S will be 
very small, if not identically zero. Mathematically it is more convenient to 
use the baffled geometry of Fig. 8.1 (b) rather than the original geometry 
since we then need only to find how a specified velocity field on z = 0 
generates fields in the fluid half-space z > 0.  

 Determining what the velocity field distribution is on the face of a 
commercial  transducer  is  not  a  trivial  task. Although  in  principle  it  is  
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Fig. 8.2. A transducer radiating a perfectly collimated beam at high frequencies. 

possible to determine this field experimentally, the measurements are time-
consuming and require expensive equipment. Fortunately, for many commer-
cial transducers we can avoid this difficulty by assuming a velocity 
distribution. The most common assumption is to treat the transducer as a 
piston transducer where the velocity is taken to be spatially uniform over 
the entire transducer face, i.e. ( ) ( )0, ,zv x y vω ω= . This simple piston model 
has proven to work well as a basis for characterizing many commercial 
transducers so it is the model we will adopt here. One should be aware that 
the validity of this assumption, however, depends on the construction 
details of the transducer and may be violated in some cases.  

 If the frequency, ω, was infinitely large a transducer would emit a 
beam of sound that is confined only to the cylinder of fluid  0,z r≥ ≤  
ahead of the transducer as shown in Fig. 8.2. Such a beam is said to be 
perfectly collimated. In reality the frequency is not infinite so that the 
beam will spread beyond this cylinder, but at the MHz frequencies found 
in NDE testing a transducer beam will still remain fairly well collimated. 

 
 

 
Fig. 8.3. A 5 MHz, ½ inch diameter circular piston transducer radiating sound into 
water.  

a

This fact is demonstrated in  Fig. 8.3 where the  magnitude of the  pressure 
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field in the x-z plane is shown for a one half inch radius planar piston 
transducer radiating at 5 MHz into water. There are strong pressure vari-
ations in the pressure field, particularly in the region near the transducer. 
These variations show that one cannot consider the transducer beam to be 
a simple uniform and well collimated beam as seen, for example, in a 
flashlight beam. Modeling these pressure variations, therefore, is a non-
trivial task. 

8.2 An Angular Plane Wave Spectrum Model 

Although a transducer does not generate only a plane wave, one way to 
model a transducer (as a baffled source) is to treat it as the superposition of 
an infinite number of plane waves, all traveling in the positive z-direction 
but with different x- and y- component directions. This is basic idea behind 
an angular plane wave spectrum model, where the pressure wave field at a 
point, ( ), ,x y z=x , is represented in the form of a 2-D integral given by 
[Fundamentals], [8.1] 

( ) ( ) ( )
21, , exp .

2 x y x y z x yp P k k i k x k y k z dk dkω
π

+∞ +∞

−∞ −∞

⎛ ⎞ ⎡ ⎤= + +⎜ ⎟ ⎣ ⎦⎝ ⎠ ∫ ∫x  (8.1)

Since the time-domain pressure, ( ),p tx , must satisfy the 3-D wave 
equation 

2 2 2 2

2 2 2 2 2

1 0p p p p
x y z c t

∂ ∂ ∂ ∂
+ + − =

∂ ∂ ∂ ∂
 (8.2)

for ( ) ( ) ( ), , expp t p i tω ω= −x x  we must have ( ),p ωx  satisfy 

2 2 2
2

2 2 2 0,p p p k p
x y z

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 (8.3)

which is called  the Helmholtz equation.  Clearly, ( ),p ωx  will satisfy 
Eq. (8.3) if all of the exponential terms in Eq. (8.1) also satisfy that 
equation. Placing ( )exp x y zi k x k y k z⎡ ⎤+ +⎣ ⎦  into Eq. (8.3), we find as a 

requirement that 2 2 2
z x yk k k k= ± − − . In order to have waves traveling in 

the  positive  z-direction  (as they must, physically,  for our problem),  only  
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Fig. 8.4. Model of a transducer as a superposition of plane and inhomogeneous 
waves radiating into the region 0z ≥ . 

the positive value is acceptable and so we choose 2 2 2
z x yk k k k= − − . Terms 

such as ( )2 2 2exp x y x yp ik x ik y i k k k z= + + − − are just plane harmonic 

waves as long as 2 2 2
x yk k k> + is satisfied. In Eq. (8.1), however, all values of 

,x yk k  are superimposed so that there will be values of those variables in the 

integrations where 2 2 2
x yk k k+ >  and zk  will be imaginary. For those cases if 

we take 2 2 2
z x yk i k k k= + −  we will no longer have plane waves propagating 

into the half-space z > 0 but instead will have waves that propagate in the 
x- and y-directions from the transducer but that are exponentially decaying 

in the z-direction of the form ( )2 2 2exp x y x yp ik x ik y k k k z= + − + − [note: 

2 2 2
z x yk i k k k= − + −  cannot be used since then we would obtain waves 

that grow exponentially in the z-direction away from the transducer, which 
is not physical]. Such waves are called inhomogeneous waves. Thus, strictly 
speaking, Eq. (8.1) represents the pressure wave fields as a superposition 
of both plane wave and inhomogeneous wave fields (see Fig. 8.4) where 
we must have 

2 2 2 2 2 2

2 2 2 2 2 2

,
.

,

x y x y
z

x y x y

k k k k k k
k

i k k k k k k

⎧ − − ≥ +⎪= ⎨
+ − < +⎪⎩

 (8.4)

Appendix D gives a discussion of inhomogeneous waves found when 
solving plane wave transmission/reflection problems. 
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In order for Eq. (8.1) to represent the solution to our baffled trans-
ducer model, we must determine the unknown ( ),x yP k k  so that the velocity 

boundary conditions are satisfied on the plane z = 0. From the equation of 
motion for the fluid (see Appendix D) we have 

( ) ( )1, , 0, , , 0, ,z
pv x y z x y z

i z
ω ω

ωρ
∂

= = =
∂

 (8.5)

where ρ is the density of the fluid. Placing Eq. (8.1) into this relationship 
we find 

( ) ( )
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∫ ∫  (8.6)

To see what Eq. (8.6) means, let ( ) ( ), , /x y z x yV k k ik P k k iωρ= . Then Eq. 

(8.6) becomes simply 

( ) ( )
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∫ ∫  (8.7)

Equation (8.7) is in the form of two inverse Fourier transforms where the t 
and ω  parameters in the time and frequency domains (see Appendix A) 
are replaced by wave numbers and spatial parameters, i.e.  ,xk t xω → − →  
for one transform and ,yk t yω → − → for the other transform. Thus, Eq. (8.7) 
is called an inverse 2-D spatial Fourier transform. By the properties of the 
Fourier transform it then follows that we must have 

( ) ( ) ( ), , , 0, exp ,x y z x yV k k v x y z i k x k y dxdyω
+∞ +∞

−∞ −∞

⎡ ⎤= = − +⎣ ⎦∫ ∫  (8.8)

which shows that ( ),x yV k k  is just the 2-D spatial Fourier transform of the 

velocity field on the plane z = 0. For a circular piston transducer of radius 
a, for example, where 

( ) ( ) 2 2 2
0

2 2 2
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0
z
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ω
ω
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 (8.9)
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the 2-D spatial Fourier transform in Eq. (8.8) can be obtained explicitly as 

( ) ( )
( )2 2

12
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, 2 ,
x y

x y

x y
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V k k a v

k k a
π ω

+
=

+
 (8.10)

where 1J  is a Bessel function of order one. Similarly, for a rectangular piston 
transducer of length xl  in the x-direction and length yl  in the y-direction 
we find 
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 (8.11)

Thus, for any given velocity distribution on z = 0, the pressure wave field 
from the transducer can be found explicitly as 

( ) ( )
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∫ ∫x
 (8.12)

once the 2-D spatial Fourier transform of the velocity field at z = 0 is 
known. Equation (8.12) is an exact result that can be used directly for 
numerical modeling of transducer wave fields. However, it is a model that 
is numerically very challenging to implement since one still needs to 
perform two infinite integrations of rapidly varying functions. In practice, 
it has been found that the inhomogeneous waves contribute little to the 
pressure wave field except in a region very close to the transducer, which 
is usually not of great interest. Thus, most numerical evaluations of 
Eq. (8.12) simply ignore all the inhomogeneous waves and compute 
instead the finite integrals over all the plane wave terms 
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 (8.13)

Equation (8.13) is now a more tractable transducer model, but it still 
requires a significant amount of computation (i.e. many plane wave 



134      Transducer Sound Radiation 

components need to be superimposed) in order to adequately simulate the 
transducer beam. Also, Eq. (8.13) does not explicitly show us much about 
the physics of the sound generation process. Thus, we will consider 
another transducer model that remedies some of these deficiencies. 

8.3 A Rayleigh-Sommerfeld Integral Transducer Model 

In discussing linear systems in Appendix C, we saw that the convolution 
theorem played a crucial role. In that case, we showed that a 1-D time 
domain convolution of two functions was equivalent to taking the inverse 
Fourier transform of a product of their Fourier transforms. Since here 
Eq. (8.12) is in the form of a 2-D inverse spatial Fourier transform of a 
product of 2-D transforms, we could expect that a 2-D form of the 
convolution theorem might play an equally important role here. This 
indeed turns out to be the case. First, we state the following 2-D (spatial) 
convolution theorem [8.2]: 

 
If 

    ( ) ( ) ( ) ( )
21, , , exp

2 x y x y x y x yf x y H k k G k k i k x k y dk dk
π

+∞ +∞

−∞ −∞

⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎣ ⎦⎝ ⎠ ∫ ∫  
 

 
then 

( ) ( ) ( ), , ,f x y h x y g x x y y dx dy
+∞ +∞

−∞ −∞

′ ′ ′ ′ ′ ′= − −∫ ∫  
 

where ( ),x yH k k  is the 2-D spatial Fourier transform of ( ),h x y  and 
( ),x yG k k is the 2-D spatial Fourier transform of ( ),g x y . We can use this 

theorem directly for Eq. (8.12) if we make the following definitions 

( ) ( )

( ) ( ) ( )
, ,

exp
, , , .

x y x y

z
x y x y

z

H k k i V k k

ik z
G k k G k k z

ik

ωρ= −

≡ =
−

 (8.14)

Then it follows that 
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( ) ( )
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ωρ ω
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The expression for h in Eq. (8.15) follows directly from the fact that 
( ),x yV k k  is the 2-D spatial Fourier transform of ( ), , 0,zv x y z ω= . The 

expression for g in Eq. (8.15) comes from Weyl’s representation of a 
spherical wave in terms of an angular plane wave spectrum integral 
[Fundamentals]. In particular, Weyl showed that 

( )
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∫ ∫

 (8.16)

From Eqs. (8.12), (8.14) and (8.15) and the 2-D convolution theorem then 
it follows that we have an alternate representation for the pressure wave 
field of a transducer given by 

( ) ( )

( ) ( )

( ) ( )

2 2 2

2 2 2
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2
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z
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ik x x y y z
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ωρω ω
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⎡ ⎤′ ′− + − +⎢ ⎥⎣ ⎦ ′ ′⋅
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∫ ∫x

 (8.17)

which is called the Rayleigh-Sommerfeld integral. Just as Eq. (8.12) gave 
us a transducer model in terms of a superposition of plane (and 
inhomogeneous) waves traveling in different directions, the Rayleigh-
Sommerfeld integral represents the transducer radiation as a superposition 
of spherical waves radiating from point sources distributed on the plane 
z = 0. Since any transducer only generates a non-zero velocity over some 
finite area, S ,  (see Fig. 8.5), we can rewrite Eq. (8.17) more compactly  as 
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Fig. 8.5. A transducer modeled as a superposition of radiating point sources. 

( ) ( ) ( )exp
, , , 0,

2 z
S

ikrip v x y z dS
r

ωρω ω
π

− ′ ′= =∫∫x  (8.18)

where ( ) ( )2 2 2r x x y y z′ ′= − + − +  (see Fig. 8.5) is the distance from an 

arbitrary point ( ), ,0x y′ ′=y on the transducer surface, S, to a point, 

( ), ,x y z=x , in the fluid and dS is an element of area on the transducer 
surface. For the particular case of a piston transducer the Rayleigh-
Sommerfeld integral reduces to an even simpler form given by 

( ) ( ) ( )0 exp
, .

2 S

i v ikr
p dS

r
ωρ ω

ω
π

−
= ∫∫x  (8.19)

The Rayleigh-Sommerfeld integral for a piston source, Eq. (8.19), is used 
in many texts to discuss transducer radiation in a fluid [Fundamentals]. In 
general, it still requires a significant amount of numerical effort to evaluate 
since although one now only has to integrate over the finite face of the 
transducer, the complex exponential term in the integrand of Eq. (8.19) has 
a rapidly varying phase for the frequencies and transducer sizes used in 
NDE tests that makes the 2-D numerical integrations lengthy. However, as 
we will see, the Rayleigh-Sommerfeld integral does allow us to examine 
more directly the physics of the transducer radiation problem than 
Eq. (8.12) permits and we can even extract exact results in some important 
special cases. 
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Fig. 8.6. Geometry for a circular planar piston transducer radiating direct and edge 
waves to a point x on the axis of the transducer. 

 
Fig. 8.7. The direct and edge waves generated by an impulsively excited circular 
piston transducer. 

8.4 On-Axis Behavior of a Planar Circular Piston 
Transducer  

Consider first the special case where we wish to obtain the pressure wave 
field on the central axis of a circular piston transducer of radius a as shown 
in Fig. 8.6. In this case because of symmetry we can take the area element 
as 0 02dS dπρ ρ= , where 0ρ  is the radial distance on the plane z = 0 from 
the center of the transducer to an arbitrary point on the transducer surface. 
Since 2 2 2

0r zρ= +  it follows that 2dS rdrπ= . Placing this result into 
Eq. (8.19) then allows us to integrate the remaining complex exponential 
term to obtain an exact expression for the on-axis pressure given by 
[Fundamentals] 

( ) ( ) ( ) ( )2 2
0, exp exp .p z cv ikz ik z aω ρ ω ⎡ ⎤= − +⎢ ⎥⎣ ⎦

 (8.20)
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Fig. 8.8. On-axis normalized pressure versus normalized distance z/N for a 
5 MHz, 1/2 inch diameter planar transducer radiating into water, where N is the 
near field distance. 

The first term is a wave that has traveled a distance z directly from the face 
of the transducer to the point on the transducer axis while the second term 
is a wave that has traveled a distance  2 2z a+  so that it appears to have 
come from the edge (rim) of the transducer, as shown in Fig. 8.6. Indeed, if 
one examines the pulses which travel from an impulsively excited 

wave) that travels normal to the face of the transducer and a doughnut-like 
wave front that comes from the transducer rim (the “edge” wave). Except 
very near the transducer and for very short pulses, however, we will likely 
not see these two waves separately. Indeed, at large distances from the 
transducer where z a>> , an expansion of the edge wave term gives 

2 2 2 21 / 2z a z a z⎡ ⎤+ ≈ +⎣ ⎦ . If we also assume 2 / 2 1ka z <<  it follows to 

first order that 

( ) ( ) ( )2
0 exp

, ,
2

i a v ikz
p z

z
ωρ ω

ω
−

=  (8.21)

which now looks like a single, spherically spreading wave. This result is 
reasonable since at sufficiently large distances from the transducer the 
transducer should act like a point source. Distances that satisfy this 
criterion are said to be in the transducer far field or in the spherically 
spreading region of the transducer. 

transducer, as shown in Fig. 8.7 , one sees a plane wave front (the “direct” 
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 If one plots the magnitude of the on-axis pressure versus z that one 
obtains from Eq. (8.20), then one sees two distinct types of behavior for 
the on-axis response (Fig. 8.8). Near the transducer one sees a series of 
nulls and maxima. In this near field region, one can show from Eq. (8.20) 
that the maxima are located approximately at the distances 

( )/ 2 1 0,1,2,...z N m m= + =  while the nulls are at approximately 
/ 2 1,2,3,...z N n n= =  where 2 /N a λ=  (the ratio of the radius squared 

of the transducer to the wave length, λ ) is called the near field distance 
and distances z N<  are said to be in the transducer near field 
[Fundamentals]. As the distance z increases, the last on-axis null occurs at 

/ 2z N=  and the last on-axis maximum occurs at z N= . Beyond z N=  
the pressure field simply decays monotonically. At a distances greater than 
approximately three near field distances from the transducer the exact on-
axis response begins to agree very well with the far field expression of Eq. 
(8.21) so that 3z N= is generally taken as the start of the transducer far 
field region. 

8.5 The Paraxial Approximation 

Having the exact on-axis behavior of the transducer also enables us to 
discuss an important concept called the paraxial approximation. If we 
examine the direct and edge waves we see (Fig 8.6) that they are separated 
by the angle θ. At a distance z approximately equal to a transducer diameter 
(2a), this angle begins to become small enough so that we can assume 

2 2 2 21 / 2z a z a z⎡ ⎤+ ≈ +⎣ ⎦ . However, unlike the far field case, we will not 
also assume 2 / 2 1ka z << (which is equivalent to z Nπ>> , i.e. under this 
condition we must be many near field distances away from the transducer), 
so that we are not necessarily in the transducer far field. This means that in 
the present case we are only assuming that the angle θ is small enough so 
that all the waves in the transducer beam can be considered to be traveling 
in approximately the same direction (which in this case is along the z-axis). 
This is the essence of the paraxial approximation. For this approximation 
we have 

( ) ( )
2

0, exp 1 exp .
2

ikap z cv ikz
z

ω ρ
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (8.22)
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Fig. 8.9. On-axis normalized pressure versus normalized distance z/N for a 5 MHz, 
1/2 inch diameter planar transducer radiating into water (paraxial approximation). 

Equation (8.22) still contains the direct and edge waves of the original 
exact response but it is in the form of a quasi-plane wave since it can be 
written as 

( ) ( ) ( )0, , , exp .p z C z a cv ikzω ω ρ= ⎡ ⎤⎣ ⎦  (8.23)

The term in the brackets in Eq. (8.23) is just a plane wave traveling in the 
z-direction. The coefficient ( ), ,C z a ω  that multiplies this plane wave is 
called a diffraction coefficient. It accounts for all the deviations in 
amplitude and phase of the on-axis response in the actual transducer beam 
from that of a plane wave. In this case we simply have 

( ) ( )2, , 1 exp / 2 .C z a ika zω = −  (8.24)

Figure 8.9 plots the on-axis response in the paraxial approximation 
(Eq. (8.22)) for the same case shown in Fig. 8.8. It can be seen from those 
figures that the paraxial approximation captures well both the near and far 
field on-axis behavior of the transducer. Only within approximately a 
transducer diameter, a region not shown in these figures, does the paraxial 
approximation begin to lose accuracy. This means that for most NDE 
testing situations where we are not concerned with the wave fields imme-
diately adjacent to the transducer, the paraxial approximation should work 
well. The importance of the paraxial approximation is that it can also work  
well in much more general testing situations where we are considering 
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Fig. 8.10. An immersion transducer radiating at normal incidence through a planar 
fluid-solid interface. 

off-axis transducer responses and where the transducer beam itself has 
been transmitted or reflected from various parts of a component’s geometry. 
These types of complicated interactions occur frequently in NDE tests, so 
that if the paraxial approximation is valid, we may still treat the sound 
beam approximately as a quasi-plane wave and all the complicated 
interactions of the transducer sound beam with the component geometry 
can be treated approximately as interactions of a plane wave with that 
geometry. Plane wave interactions are much easier to deal with than inter-
actions involving more general wave types so that the paraxial approxi-
mation gives us a powerful tool for accurately simulating many complex 
problems. The key, of course, is in being able to efficiently determine the 
diffraction coefficient (either analytically or numerically) for a given 
testing problem. Fortunately, this is possible, as we will see, in many 
cases. We will outline here one example where the paraxial approximation 
can be used in a more general testing setup to determine the transducer 
wave field. Consider a planar circular piston transducer of radius a radiating 
through a planar fluid-solid interface at normal incidence (see Fig. 8.10). 
In this case the compressional waves (P-waves) in the fluid generate primarily 
P-waves in the isotropic elastic solid and the on-axis velocity in the solid is 
given by [Fundamentals] 

( ) ( )
2

1;
2 0 12 1 1 2 2, exp 1 exp ,

2
pP P

p p p

ik a
z v T ik z ik z

z
ω

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

v d
%

 (8.25)

where ( )/ 1,2pj pjk c jω= = are wave numbers for P-waves in the fluid and 
pd

 
solid,  respectively,  is  a unit  vector  (polarization  vector)  along   the  
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Fig. 8.11. Propagation of an edge wave through a fluid-solid interface to an on-
axis point x in the solid and the corresponding “virtual” point V that the edge wave 
would travel to in the solid if it's angle was not changed upon refraction through 
the interface. 

propagation direction, ;
12
P PT  is a plane wave transmission coefficient for  

P-waves in the solid due to P-waves in the fluid (the ratio of the velocity at 
the interface on the solid side to the velocity on the fluid side) and 

1 2 2 1/p pz z c z c= +% . The combined leading terms multiplying the bracketed 
expression in Eq. (8.25) represent a plane wave that has traveled from the 
transducer to a depth, 2z , in the solid while the bracketed term itself is the 
diffraction coefficient for this problem. Interestingly, this diffraction 
coefficient is in exactly the same form as for the on-axis response for a 
single fluid medium so that all of the near and far field on-axis behavior 
we discussed previously for the single fluid case remain valid for this 
problem if we replace the z-distance in the fluid by the equivalent distance 

1 2 2 1/p pz c z c+ . This result can be explained by the behavior of the edge 
wave at the interface as shown in Fig. 8.11. From that figure we see that 

2 2 1sin sinp pd dε θ θ= =  where 2d is the path length of the edge wave in 
the solid and d is the distance from the interface to a “virtual” point, V, on 
the axis of the transducer in the solid, which is where the edge wave would 
arrive on the axis if it had not had its direction changed upon refraction. 
Solving for d, we find 2 2 1sin / sinp pd d θ θ= . However, from Snell's law for 
refracted waves we have 2 1 2 1sin / sin /p p p pc cθ θ =  so ( )2 1 2/p pd c c d= . If 
we now define the corresponding distance to the virtual point along the z-
axis as z% , in the paraxial  approximation  this virtual point distance is given  
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Fig. 8.12. Geometry parameters for defining the far field behavior of a transducer. 

by ( ) ( )1 1 2 1 2 1 2 1 2/ /p p p pz d d d c c d z c c z≅ + = + ≅ +% . We see that for the inter-

face problem, in the paraxial approximation the refracted waves appear to 
go through a z-distance, z% , to the virtual point on the axis in exactly the 
same manner as for a single medium problem where the interface is absent. 
In the diffraction correction for a single medium, therefore, one can simply 
replace the z-distance by the equivalent distance, z% , to obtain the diffraction 
correction for this case. 

8.6 Far field On-Axis and Off-Axis Behavior 

In section 8.4 we obtained an explicit expression (Eq. (8.21)) for the on-axis 
far field wave field of a circular planar piston transducer. Here, we will 
show that it is possible to obtain an expression for the entire far field 
transducer behavior for both on- and off-axis points for planar transducers. 
This expression is often referred to as the Fraunhoffer approximation for 
the transducer wave field. First, we express the radius r in Eq. (8.18) in 
terms of the distance R and unit vector e pointing from the center of the 
transducer to point x as (see Fig. 8.12) 

( ) ( )
( ) ( ).

r

R R

= − ⋅ −

= − ⋅ −

x y x y

e y e y
 (8.26)

In the far field R<<y  so we can expand the square root in Eq. (8.26) to 
obtain: 
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Fig. 8.13. The unit vector, e, and its cylindrical components, where ze is along the 
z-axis and ρe  is in a radial direction in a plane parallel to the circular transducer 
of radius a. 

1 2 /
.

r R R
R

≅ − ⋅

≅ − ⋅

e y
e y

 (8.27)

Both terms in Eq. (8.27) are used to approximate r in the phase part of the 
spherical wave term in Eq. (8.18) while only the leading term is used to 
approximate the 1/r amplitude term. The reason for this difference in the 
number of terms retained is that the phase is much more sensitive to 
approximation than the amplitude since in the phase not only must a term 
that is neglected be smaller than those terms retained but the neglected 
term must also be much less than 2π. These approximations reduce Eq. (8.18) 
to the form 

( ) ( ) ( ) ( )exp
, , ,0, exp ,

2 z
S

ikRip v x y ik dS
R

ωρω ω
π

− ′ ′= − ⋅∫∫x e y  (8.28)

which can be rewritten as 

( ) ( ) ( ){

( ) }

exp
, , ,0,

2

exp ,

z
S

x y

ikRip v x y
R

i k x k y dx dy

ωρω ω
π

− ′ ′=

⎡ ⎤ ′ ′⋅ − +⎣ ⎦

∫∫x
 (8.29)

where ,x x y yk ke k ke= = . From Eq. (8.8) we recognize the integral in 
Eq. (8.29) as just the 2-D spatial Fourier transform of the velocity field, 
( ),x yV k k , so that we have, finally 
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Fig. 8.14. The far field variation of the normalized pressure versus radial distance, 0ρ , 
for a circular transducer at three and six near field distances, showing the spreading 
of the angular lobes of the response and the decay in amplitude with increasing 
distance from the transducer. 

 
Fig. 8.15. The contours of the  far field pressure distribution in a plane parallel to 
the face of a 3mm x 6 mm rectangular transducer radiating into water at 5 MHz 
and at a distance of 70 mm. 
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( ) ( ) ( ), exp
, .

2
x yi V k k ikR

p
R

ωρ
ω

π

−
=x  (8.30)

For a circular piston transducer, we have, using Eq. (8.10) and 
2 2 sinx ye e eρ θ= + =  (see Fig. 8.13) 

( ) ( ) ( ) ( )12
0

sin exp
, ,

sin
J ka ikR

p i a v
ka R

θ
ω ωρ ω

θ
= −x  (8.31)

which represents a spherical pressure wave in the far field whose 
amplitude is angular dependent. Figure 8.14 plots the magnitude of the 
normalized pressure, 0/p cvρ , at different fixed distances, z, from the trans-
ducer face as a function of the radial distance, 0ρ , from the transducer’s 
central axis, where  0sin / zθ ρ= . For both 3z N=  and 6z N=  one sees 
the lobe structure generated by the ( )1 /J u u  angular directivity term of the 
response in the far field. At 6z N= , however, the lobes are broader than at 

3z N= due to beam spreading and the amplitude is also smaller because of 
the 1/R spherical wave decay term. 

 For a rectangular transducer with length xl  in the x-direction and 
length yl  in the y-direction, Eqs. (8.11) and (8.30) give the far field behavior 
as 

( ) ( ) ( ) ( )
( )( )

( )0 sin / 2 sin / 2 exp
, .

2 / 2 / 2
x x y yx y

x x y y

k l k li l l v ikR
p

Rk l k l
ωρ ω

ω
π

−
=x  (8.32)

Figure 8.15 gives a 2-D cross sectional plot of the magnitude of the 
normalized pressure, 02 /p cvπ ρ , as a function of the distances x and y for 

a given distance z, where 2 2 2/ /xk kx R kx x y z= = + +  and 
2 2 2/ /yk ky R ky x y z= = + + . This figure shows the complex 2-D lobe 

structure present for a rectangular transducer. 
 

 8.7 A Spherically Focused Piston Transducer 

Many commercial focused transducers produce a focused acoustic sound 
beam by incorporating an acoustic lens into the  transducer  design. Modeling 
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Fig. 8.16. The O’Neil model for a spherically focused piston transducer. 

 
Fig. 8.17. Geometry parameters that appear in the on-axis response of a spheri-
cally focused transducer. 

same focusing effect by considering the transducer to be a piston 
transducer where a constant (radial) velocity is placed on a spherical 
surface instead of a plane one. In this case one still uses the Rayleigh-
Sommerfeld integral (Eq. (8.19)) but now the integration is over a finite 
radius, a, of a spherical surface S whose radius of curvature is 0R , as 

[Fundamentals]. While the replacement of the integration over a plane 
surface in the Rayleigh-Sommerfeld integral by integration over a 
spherical surface is an ad-hoc approach that is not valid in a strict 

long as the focusing is not too severe. Such severe focusing can be found 
in practice, for example, in acoustic microscopes. Most commercial 
focused NDE transducers, however, are not tightly focused so that the 

a  point x in the fluid on the  axis of the spherically  focused transducer one  
O’Neil model should work well in practice for most NDE applications. For 

mathematical sense the O’Neil model has been shown to be accurate as 

shown in Fig. 8.16. This focused transducer model is due to O’Neil [8.3], 

in detail such a configuration is very difficult but one can induce the 
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Fig. 8.18. The on-axis normalized pressure for a 6.35 mm radius spherically 
focused piston transducer radiating into water at 10 MHz with a geometric focal 
length of 76.2 mm. 

can show that the element of area ( )02 /dS q rdrπ=  where 0 01 /q z R= −  

model, can be integrated exactly for this case. We find 

( ) ( ) ( )0

0

, exp exp ,e
cvp z ikz ikr
q
ρ

ω = ⎡ − ⎤⎣ ⎦  (8.33)

where ( )2 2
er z h a= − +  and 2 2

0 0h R R a= − − . These distances are 
shown in Fig. 8.17. 

 Figure 8.18 shows a plot of the normalized pressure, 0/p cvρ , 
versus normalized distance, 0/z R , for a 6.35 mm radius transducer with 
geometrical focal length of 76.2 mm radiating into water at 10 MHz. It can 
be seen from that figure that for distances where 0z R<  the response has a 
series of nulls and maxima which eventually produce a single large peak 
near 0z R=  (the geometrical focal length). There is another null at 
approximately 02.25z R=  and a very small response thereafter. It can be 
shown that the nulls are located approximately at distances nz  given by 
[Fundamentals] 

[Fundamentals]. Thus, the O’Neil model, like the Rayleigh-Sommerfeld 
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0 ,n
hz R

h nλ
⎛ ⎞= ⎜ ⎟±⎝ ⎠

 (8.34)

where λ  is the wave length and the plus sign is for nulls satisfying 0z R<  
while the minus sign is for nulls where 0z R> . For nulls beyond the geo-
metrical focus, however, there is an additional restriction h nλ≥ that must 
be satisfied for those nulls so that in some cases such nulls may not exist at 
all. Unfortunately, one cannot write down a simple relationship for the 
location of the on-axis maxima as done for the planar transducer case. The 
most one can do is state that they are determined by the roots of a transcen-
dental equation which is [Fundamentals] 

( ) ( ) ( )
( )0 0

2 sin / 2
cos / 2 ,

z k
k

kR h q
δ δ

δ
δ

+
=

+
 (8.35)

where ( )2 2
er z z h a zδ = − = − + − . 

Note that due to wave diffraction effects the maximum response 
(true focus) at finite frequencies occurs at a distance somewhat less than 
the geometric focal length (geometric focus), as shown for this case. It is 
only at infinitely large frequencies that the maximum on-axis response 
occurs at 0z R= . 

 With some algebra we can express the distance er  also in the form 

( )2 2 2
0er z a h q z= + + − [Fundamentals]. In the paraxial approximation 

we must have h a<<  (not too severe focusing) and z a>>  (not too near 
the transducer). In this approximation we find 

2 2
0

2
0

2

2
0

1 ...
2

2

er z a q z

a qz z
z

a q
z

≅ + −

⎛ ⎞
≅ + + −⎜ ⎟

⎝ ⎠

=

 (8.36)

so that the on-axis response in Eq. (8.33) becomes 

( ) ( ) ( )2
0 0

0

1, exp 1 exp / 2 ,p z cv ikz ika q z
q

ω ρ
⎧ ⎫⎡ ⎤= −⎨ ⎬⎣ ⎦⎩ ⎭

 (8.37)
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Fig. 8.19. The on-axis response calculated with the paraxial approximation for the 
same spherically focused transducer shown in  Fig. 8.18. 

which shows that the on-axis diffraction coefficient for a spherically focused 
piston transducer is given by 

( ) ( )2
0 0

0

1, , , 1 exp / 2 .C z a R ika q z
q

ω ⎡ ⎤= −⎣ ⎦  (8.38)

For a planar transducer 0 1q →  and Eq. (8.38) reduces to Eq. (8.22). As in 
the planar case the paraxial approximation works very well in describing 
the ultrasonic beam from a spherically focused transducer as long as the 
focusing is not too severe and one is not too close to the transducer. 
Figure 8.19 shows the on-axis pressure plot predicted in the paraxial 
approximation for the same case shown in Fig. 8.18. It can be seen that the 
two responses are nearly identical. 

 The paraxial approximation also can be used as a means for 
illustrating a relatively simple way to incorporate focusing into a 
transducer beam model. Consider a planar circular piston transducer. Since 
the velocity is uniform over the face of the transducer, the phase of this 
velocity field is constant (zero) on this aperture. In contrast, if the 
transducer had generated a spherically converging wave which focuses at z 
= 0R on the axis of the transducer the phase of the velocity field on the 
aperture would not be a constant (see Fig. 8.20). On the plane z = 0 we 
would instead  have a phase  term given, in the paraxial  approximation, by 
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Fig. 8.20. Geometry for defining the phase variations on the plane z = 0 of a spheri-
cally converging wave that focuses at z = 0R . 

[ ]( )
( )

2 2
0 0 0 0

2
0 0

exp exp

exp / 2 .

sik r R ik R R

ik R

ρ

ρ

⎡ ⎤⎡ ⎤− − = − + −⎢ ⎥⎣ ⎦⎣ ⎦

≅ −
 (8.39)

[Note: we have included the 0ikR  term in Eq. (8.39) so that the phase of the 
wave is zero at the origin ( )0 0zρ = = , i.e. the wave starts out from that 
point at time t = 0. The sikr−  term has a negative sign because sr  decreases 
as the time t increases, i.e the wave is a spherical wave converging to point 
O on the axis]. Now, suppose we take the Rayleigh- Sommerfeld integral 
model of a planar piston transducer and simply include the phase term 
given in Eq. (8.39) over the planar transducer surface S. From Eq. (8.19) 
we would have 
 

 
Fig. 8.21. Geometry variables for defining the field behavior at a plane located a 
distance from the transducer equal to the geometrical focal length. 
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( ) ( ) ( ) ( )0 2
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π

−
= −∫∫x  (8.40)

Consider now the on-axis response. For a circular transducer we can take 

0 02dS dπρ ρ= . But 2 2 2
0 0 / 2r z z zρ ρ= + ≅ +  in the paraxial approximation 

so that we obtain an integral that can be done explicitly, giving 

( ) ( ) ( )

( ) ( )

0 2
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0

0 2
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∫
 (8.41)

Equation (8.41) is identical to the paraxial result of Eq. (8.38) obtained 
from the O’Neil model. Thus, in the paraxial approximation, the effect  
of spherical focusing can be modeled by including a phase term 

( ) ( )2 2 2
0 0 0exp / 2 exp / 2ik R ik x y Rρ ⎡ ⎤− = − +⎣ ⎦ on the aperture plane z = 0 of 

a planar transducer model. In a similar manner one could introduce bi-
cylindrical focusing (different focal lengths xR  and yR  in the x- and y- 
directions, respectively) by including a phase term of the form 

( )2 2exp / 2 / 2x yik x R y R⎡ ⎤− +⎣ ⎦ . 

8.8 Wave Field in the Plane at the Geometrical Focus 

The wave field of a spherically focused piston transducer in a plane 
located at a distance z = 0R can also be obtained explicitly from the O’Neil 
model. One finds (see Fig. 8.21) that [Fundamentals] 
 

( ) ( ) ( )0 1 02
0

0 0

exp /
, ,

/
ikR J kay R

p i v a
R kay R

ω ωρ= −x  (8.42)

where 0R is the distance from the origin to a point x in the wave field. 
Since for most focused transducers the beam at the geometric focus is 
confined to a relatively small region near the transducer axis, in most cases 
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Fig. 8.22. The pressure distribution (due to the ( )1 /J u u  function) on a plane parallel 
to the transducer face at a distance from the transducer equal to the geometric 
focal length. 

we can take, approximately, 0 0R R= . It is interesting to note that the form 
of Eq. (8.42) is identical to that of the far field behavior of a circular planar 
piston transducer (see Eq. (8.31)). In this case, Eq. (8.42) gives us an 
explicit expression from which we can obtain an estimate of the beam 
width at the geometric focus. Usually that width is specified as the width 
of the main lobe when the magnitude of the response has dropped 6 dB 
from the maximum on-axis response, as shown in Fig. 8.22. Using Eq. (8.42), 
this beam width is given as [Fundamentals] 

0
6

4.43 1.41f dB

RW F
ka

λ= =  (8.43)

where 0 / 2F R a=  is called the transducer F-number. 

8.9 Radiation of a Focused Transducer through an 
Interface 

If one uses a focused transducer in an immersion setup, the transducer 
beam will be affected by the fluid-solid interface and focus at a shortened 
distance in the solid, as shown in Fig. 8.23 where a spherically focused 
piston  transducer  of  radius a and focal  length 0R is radiating  P-waves at  
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Fig. 8.23. A spherically focused piston transducer radiating a sound beam at 
normal incidence through a fluid-solid interface. 

normal incidence to a planar fluid-solid interface. It can be shown that in 
the paraxial approximation the on-axis velocity wave field in the solid again 
can be expressed as a plane wave multiplied by a diffraction coefficient, C, 
i.e.[Fundamentals] 

( ) ( ) ( );
0 12 1 1 2 2 1 2 0, exp , , , , ,P P

p p pv T ik z k z C z z a Rω ω= +v x d  (8.44)

 
where 
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2

1 0
1 2 0
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1, , , , 1 exp
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pik a q
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q z
ω

⎡ ⎤⎛ ⎞
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%

% %
 (8.45)

is of the same form as the diffraction coefficient for the single fluid medium, 
but with the distance z replaced by 1 2 2 1/p pz z c z c= +%  as in the planar 
transducer case and where 0 01 /q z R= −% % . 

8.10 Sound Beam in a Solid Generated by a Contact 
Transducer 

All the examples discussed to this point have been for immersion trans-
ducers. In contact testing a P-wave transducer, like an immersion transducer, 
has an element whose motion is primarily normal to the face of the 
transducer. This transducer is placed in direct contact with the surface of 
the solid and a small layer of liquid couplant such as water, oil, or glycerin 
is placed between the transducer and the surface to ensure good coupling  
of the  transducer to the  solid. Under  these  conditions the transducer 
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Fig. 8.24. The waves generated by a contact P-wave transducer radiating into a solid. 

cannot drive the solid with a piston-like uniform velocity, since the solid is 
as stiff (or stiffer) than the transducer crystal and its wear plate. Instead,  
it is more reasonable to assume that the transducer generates a uniform 
pressure, 0p , over the transducer face. Even though this transducer is called 
a P-wave transducer, this pressure will actually launch a complicated set of 
waves of various types, as shown in Fig. 8.24 where a circular P-wave 
transducer is shown in contact with a stress-free planar surface of a solid. 
As in the fluid case, there will be a direct P-wave, PD , that exists in a 
cylindrical region ahead of the transducer and an edge P-wave, PE , that 

SE
will generate a “Head” wave, H, (also called a von Schmidt wave) that 
radiates in a conical-like fashion from the interface and links up to the 
edge S-wave. Finally, the transducer also generates a surface Rayleigh 
wave, R, which moves radially from the transducer along the free surface 
at a wave speed slightly smaller than the shear wave velocity of the solid 
and is confined to a region between the free surface and the edge S-wave. 
Although it appears that the wave field of the contact transducer in  
Fig. 8.24 is considerably more complicated than the immersion transducer 
case, not all of the waves in Fig. 8.24 are of equal importance in 
determining the wave field below the transducer in the solid. The Rayleigh 
waves, for example, do not affect the wave field except in a region very 

. When the edge P-wave grazes along the stress-free surface, it S-wave, 
radiates from the transducer edge. However, there will also be an edge 

close to the free surface. The head  waves do travel  into the  solid but they  
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Fig. 8.25. A model of a contact P-wave transducer as a uniform pressure, 0p , 
acting on the free surface of an elastic solid. 

radiate outwards at an angle from the transducer and generally are very 
weak. Thus, the predominant waves that one needs to consider are the direct 
P-wave and the edge P-waves and S-waves. A Rayleigh-Sommerfeld 
integral type of model can also be developed for these direct and edge 
waves, where the displacement vector, u, due to the waves in the solid is 
given by (see Fig. 8.25) [Fundamentals] 
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 (8.46)

where D ′ ′′= −x x , 1ρ  is the density of the solid, the compressional and 
shear wave speeds are 1 1,p sc c , respectively, and 1 1,p sd d  are the polarization 
vectors for the P-waves and S-waves. Unlike the immersion transducer 
case, the integrals also contain angular dependent directivity functions, 

( ) ( ),p sK Kθ θ′ ′  for the P-waves and S-waves. These functions are given 
by the expressions [Fundamentals] 
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Fig. 8.26. The directivity functions for a contact P-wave transducer. 
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where ( ) ( )22 2 2 2 2 2
1 1/ 2 1G x x x x xκ κ= − + − −  and 1 1 1/p sc cκ = . The 

directivities are plotted in Fig. 8.26. Near the central axis of the transducer 
1, 0p sK K≅ ≅  so that Eq. (8.46) reduces to 

( ) ( )10
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, ,
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ik Dp dS
c D

ω
πρ

′ = ∫
nu x  (8.48)

which now only contains the direct and edge P-waves in a form almost 
identical to the expression for an immersion transducer. When such a 
transducer is used to interrogate a material for flaws, it is likely that the 
response will be “peaked up” by moving the transducer so that the flaw 
will be on or near the central axis of the transducer. In that case we see 
from Eq. (8.48) that a Rayleigh-Sommerfeld integral may also be an 
appropriate model. 
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Fig. 8.27. A contact P-wave transducer on a wedge which is contact with another 
material that is to be inspected. 

 
Fig. 8.28. An equivalent “fluid” model of an angle beam shear wave transducer. 
When the incident P-wave in the wedge is beyond the first critical angle, primarily 
a refracted S-wave only is generated in the solid with polarization sd , as shown. 
Since for the configuration shown sd  lies in a vertical plane, the S-wave in the solid 
is called a vertically polarized shear wave (SV-wave). There is a small transmitted 
P-wave as well in this configuration that can generally be neglected, as indicated 
by the dashed arrow in the figure. 
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8.11 Angle Beam Shear Wave Transducer Model 

A contact P-wave can also be placed on a solid wedge and used to generate 
a shear wave in the solid by the process of mode conversion. In general, as 
shown in Fig. 8.27 the P-wave transducer generates in the wedge primarily 
the compressional and shear waves we have just discussed. These waves 
then mode convert to each generate compressional and shear waves in the 
solid, as shown. However, studies of this configuration have shown that 
again the only significant wave in the wedge is the compressional wave 
[Fundamentals]. If the angle of the wedge is chosen so that the compress-
ional wave traveling along the central axis of the transducer is beyond the 
first critical angle, then primarily a shear wave is generated in the solid, a 
configuration in which the transducer is called an angle beam shear wave 
transducer. Since the only significant wave in the wedge is the P-wave, an 
angle beam shear wave transducer can be modeled by replacing the wedge 
by an equivalent fluid that has the same density and compressional wave 
speed of the wedge material, as shown in Fig. 8.28 and model the waves 
transmitted across the interface by using the transmission coefficients for 
two solids in smooth contact (see Appendix D). Thus, one can use an 
immersion transducer model as the basis for also modeling an angle beam 
shear wave transducer. 

8.12 Transducer Beam Radiation through Interfaces 

In immersion testing, the transducer sound beam inherently must pass 
through a fluid-solid interface. This causes the beam in the solid to be 
distorted from its behavior in the fluid. We have seen how at normal 
incidence to a plane interface we can model the on-axis behavior of these 
distortions in a simple manner for both planar and spherically focused 
transducers (see Eqs. (8.25) and (8.44)). For curved interfaces and oblique 
incidence, the models become much more complex. We can gain some 
understanding of these cases by using high frequency ray concepts. 
Consider, for example, a planar piston transducer radiating at oblique 
incidence to a curved interface, as shown in Fig. 8.29. If we model the 
wave field in the fluid by a Rayleigh-Sommerfeld integral, then in that 
model we are radiating a distribution of spherical waves to the interface. 
From an element of area dS at point y on the transducer surface a spherical 
wave  generates  a  pressure at a general point 1x  on the  interface given by 
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Fig. 8.29. An immersion transducer radiating a sound beam of type α  ( ),p sα = in 
a solid through a curved fluid-solid interface, showing a ray path from a point y on 
the transducer surface to a point x in the solid through the interface. In the 

zation of the transmitted waves is defined by the unit vector αd . For a transmitted 
P-wave, the polarization will be along the direction of propagation while for a 
transmitted S-wave it will be perpendicular to the direction of propagation. Both 
polarizations are shown along the refracted ray but for a given wave type only one 
will be present. 

( ) ( )1 10
1

1

exp
, .

2
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r
ωρ

ω
π

−
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At high frequencies, the corresponding velocity in this spherical wave is 
given by 

( ) ( ) ( )1 11 0
1 1 1 1

1

exp
, , ,

2
pp

p p

ik rik v
d dv dS

r
ω ω

π
= = −v x x e e  (8.50)

where 1pe  is a unit vector along a line from point y on the transducer face 
to point 1x  on the interface and 1 1r = −x y . By high frequency ray theory, 
this velocity is propagated into the solid as a bulk wave of type α , where 

transducer beam model, this ray path must satisfy generalized Snell’s law. The polari-
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( ),p sα = , to generate a velocity at point x in the solid of the form 
[Fundamentals] 
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 (8.51)

where 10 10 20 10,r rα α α α= − = −x y x x  are distances from point y on the trans-

ducer surface to an interface point, 10
αx  and from that interface point to 

point x in the solid along a ray path that satisfies Snell's law for a wave of 
type α in the solid (see Fig. 8.29), i.e. we must have 

( ) ( )1 2

1 2

sin sin
.p

pc c
α

α

θ θ
=  (8.52)

We will assume that there is only one such path for the present argument, 
although that may not be true in general for complex curved interfaces. 
The term ;

12
pTα  is just the plane wave transmission coefficient (based on 

velocity ratios) for a wave of type α in the solid generated by the P-wave 
in the fluid traveling along this ray path. The factor 

1 2

1 20 2 20

v v

v vr r

α α

α α α α

ρ ρ

ρ ρ+ +
 

 

that appears in Eq. (8.51) involves two “virtual” source distances 1 2,v v
α αρ ρ  

and represents the amplitude changes predicted by ray theory. Essentially 
this factor distorts the incident spherical wave fronts in the fluid to more 
general curved wave fronts in the solid. Ray theory also predicts that there 
are additional phase changes, αφ  in the wave traveling in the solid beyond 
the term, 2 20k rαα  due to solely propagation in the solid. The vector αd  in 
Eq. (8.51) is a unit vector that describes the polarization of the transmitted 
wave. It is identical to the polarization defined for a transmitted plane 
wave of type α  generated by the interaction of a plane P-wave with a 
plane interface at point 10

αx  where the normal to the plane interface coincides 
with the actual interface normal of the curved interface at that point.  
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Fig. 8.30. (a) A planar transducer radiating  through a curved fluid-solid interface 
that spreads (defocuses) the waves in the solid, and (b) a curved interface that 
focuses the waves in the solid. 

By integrating the expression in Eq. (8.51) over the face of the 
transducer one then obtains a beam model for the total velocity in the 
transmitted waves: 

( ) [
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 (8.53)

There are, however, some difficulties with this model [Fundamentals]. As 
long as the curved interface is of a defocusing type, as shown in Fig. 
8.30 (a), where the rays from a point on the transducer surface traveling 
into the solid do not touch or cross, Eq. (8.53) is well-behaved and can be 
used, like the Rayleigh-Sommerfeld equation, to calculate the sound beam 
in the solid. However, if the curved interface is of a focusing type, as 
shown in Fig. 8.30 (b), the rays can touch or cross and the ray theory 

resulting expressions become much more complex. This difficulty arises 
mathematically because we have modeled the transducer beam as a 

amplitude term becomes infinite. There are uniform ray theory appro- 
ximations that can remove those singularities but the analysis and 
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superposition of spherical waves arising from point sources, and spherical 
waves can become singular, for example, when focused at a point by a 
curved interface. Similar focusing singularities can occur for plane waves 
incident on a curved interface so that an angular plane wave spectrum 
model will also have these same difficulties when focusing curved inter-
faces are present. In the next Chapter, we will show that these problems 
can be eliminated by expanding the transducer wave field in terms of 
Gaussian beams which always remain non-singular.  

 There is an important special case when Eq. (8.53) is always well-
behaved [Fundamentals]. That case is when the planar piston transducer is 
incident at oblique incidence on a planar interface. In that case we have 

0αφ =  and 
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so Eq. (8.53) becomes, explicitly, 

( )

( )
( ) ( )

1 0 ;
12

1 10 2 20

2 2 2 2 2 2
10 2 1 20 10 2 1 1 2 20

,
2

exp
.

/ cos / cos

p p

S

p

p p p

ik v
T

ik r ik r
dS

r c c r r c c r

α α α

α α
α

α α α α
α α α

ω
π

θ θ

−
⎡= ⎣

+
⎤⋅ ⎦+ +

∫v x d

 (8.55)

Equation (8.55) is in a form very similar to the Rayleigh-Sommerfeld 
equation. Instead of superimposing spherical waves traveling directly from 
the transducer to the point in the fluid, we now need to superimpose a 
more general set of waves with elliptical wave fronts in the solid that travel 

transmission coefficient of the interface. Since both that transmission 
coefficient and the polarization vector depend on that ray path, they are 
both implicit functions of point y on the transducer surface and so must 
remain inside the integral. In general the integral in Eq. (8.55) must be 
performed numerically, so that like the Rayleigh-Sommerfeld integral the 
highly oscillatory complex exponentials in Eq. (8.55) make this evaluation 
a rather intensive computation. Fortunately, the Gaussian beam models 
discussed in the next Chapter will also be much more numerically efficient 
than these types of Rayleigh-Sommerfeld integral models. 

along rays satisfying Snell’s law and are modified by the plane wave 
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Fig. 8.31. An experimental setup for a spherically focused transducer of radius a 
and focal length 0R  where one can obtain the acoustic/elastic transfer function 
explicitly. 

8.13 Acoustic/Elastic Transfer Function – Focused 
Transducer 

In Chapter 7 it was shown that the acoustic/elastic transfer function is needed 
in order to determine experimentally the system function. In Chapter 6 the 
acoustic/elastic transfer function also played a key role in determining the 
transducer sensitivity. In Chapter 5 we obtained an acoustic/elastic transfer 
function for both a pitch-catch and a pulse-echo immersion setup. In 
Chapter 13 a general procedure is given for using a multi-Gaussian beam 
model to determine the acoustic/elastic transfer function in cases where the 
transfer function cannot be obtained analytically (angle beam testing and 
contact testing setups with curved surfaces, etc.).  A number of other 
acoustic/elastic transfer functions can be derived from results given in 
[Fundamentals]. All of those cases, however, are for planar piston 
transducers. The acoustic/elastic transfer function for a spherically focused 
piston transducer in a pulse-echo immersion configuration is also available 
[8.4], [8.5], a case we will develop here as a simple application of the 
paraxial approximation and the use of the phase term discussed in Eq. 
(8.39). This approach will also lead to the transfer function for planar and 
cylindrically focused rectangular piston transducers in the following 
section. 

The configuration we will consider is the pulse-echo setup shown 
in Fig. 8.31 where a spherically focused piston transducer of radius a and 
focal length, 0R , radiates waves into a fluid and receives the waves reflected 
from a plane fluid-solid interface. The distance from the transducer to inter-
face is made equal to the geometrical focal length in this configuration.  
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As discussed in section 8.7, in the paraxial approximation we can use the 
Rayleigh-Sommerfeld equation to represent the wave field of a spherically 
focused transducer in the form (see Eq. (8.40)) 
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where ( ), , 0x y z =% % % are coordinates of a point on a plane at the transmitting 

transducer and ( ) ( )2 2 2
l l lr x x y y z= − + − +% %  is the distance from that 

point to a point ( ), ,l l lx y z in the fluid. Let the point in the fluid lie on the 

interface as shown in Fig. 8.31. Then ( ) ( )2 2 2
0l lr x x y y R= − + − +% % .We 

also apply the paraxial approximation to this distance function to obtain 

( ) ( )2 2
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Equation (8.57) is in the form of a quasi-plane wave so at high frequencies 
the pressure in the reflected wave at the interface, ( )0, , ,R l lp x y R ω , can be 
obtained by the plane wave relationship 
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 (8.58)

where 12R  is the reflection coefficient (based on a pressure ratio). The normal 
velocity at the interface in the rz  direction, rv , (see Fig. 8.31) is also given 
by the plane wave relationship 

( ) ( )0 12 0 1 1, , , , , , / .r l l l l pv x y R R p x y R cω ω ρ=  (8.59)
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Using this velocity field as specified on the entire interface, we can again 
use the Rayleigh-Sommerfeld integral (with the paraxial approximation 
applied again to the radius, r, in that integral) to obtain the reflected waves 
that are incident on the transducer from the interface. We find 
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For a spherically focused transducer, this pressure is received not at the 
plane 0rz R= but instead over the curved spherical surface given by 

( )2 2
0 0/ 2r r rz R x y R= − + . Placing this distance into the plane wave phase 

term in Eq. (8.60) (and using 0rz R=  elsewhere in Eq. (8.60)), the average 
pressure, avep , over the area, S, of the transducer is given by 
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Substituting the expression for the pressure at the interface (Eq. (8.57)) 
into Eq. (8.61), we obtain an explicit expression for the average pressure 
acting on the transducer. Then from this average pressure we can find the 
blocked force, 2B aveF p S= , received by the transducer as 



8.13 Acoustic/Elastic Transfer Function – Focused Transducer      167 

( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 1 0
12 1 0

0 0

2 2 2 2

1 1
0 0

2 2

1
0

2 2

1
0

2 exp 2
2 2

exp exp
2 2

exp
2

exp
2

p p p
B p

r r
p p

S S

r l r l
p

l l
p l l r r

ik ik c v
F R ik R

R R

x y x y
ik ik

R R

x x y y
ik

R

x x y y
ik dx dy dx dy

R

ρ
π π

+∞ +∞

−∞ −∞

− −
=

⎛ ⎡ ⎤ ⎡ ⎤+ +
⎜ ⎢ ⎥ ⎢ ⎥⋅ − −
⎜ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝

⎡ ⎡ ⎤− + −
⎢⋅ ⎢ ⎥
⎢ ⎢ ⎥⎣ ⎦⎣

⎞⎤⎡ ⎤− + −
⎥⎢ ⎥
⎥⎢ ⎥⎣ ⎦ ⎦ ⎠

∫∫ ∫∫

∫ ∫

% %

% %
.dxdy⎟

⎟
% %

 (8.62)

Since 1 1 0t pF c Svρ=  is the force transmitted by the transducer acting as a 

/foc
A B tt F F=  is given by 
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Equation (8.63) is a rather formidable looking expression, but we can 
proceed as follows. First, we note that the acoustic/elastic transfer function 
for a planar transducer of the same size as our spherically focused trans-
ducer, planar

At  is given by exactly the same expression as Eq. (8.63) without 
the first two phase terms: 

transmitter, the acoustic/elastic transfer function for our focused transducer,  
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In Eqs. (8.63) and (8.64) the integrals over the interface are identical for 
the focused and planar cases. These integrals can be rewritten as 
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The remaining integrals can be performed exactly because we have [8.2] 
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where Im[ ] indicates “imaginary part of ”. In Eq. (8.65) the corresponding 
A terms are purely real but if we add a small amount of “damping” by 
letting A A iε= +  and then take the limit as 0ε → , the result is the same 
as  using Eq. (8.66)  directly on the forms  given  in Eq. (8.65) and  we find 
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In the focused case, we see that the first two phase terms in Eq. (8.67) 
simply cancel the first two phase terms in Eq. (8.63) and we obtain 
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However, we note that for a circular, spherically focused transducer the 
integrations in Eq. (8.68) are over symmetrical intervals in both rx  and ry so 
that we can make the replacements r rx x→−  and r ry y→−  in Eq. (8.68) 
without affecting the end result. With those, replacements, we have, 
finally, 
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In the planar transducer case, we can place Eq. (8.67) into Eq. (8.64) to find 
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which, when the exponential terms are combined, gives 
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In Chapter 5, we obtained an explicit expression for acoustic/elastic transfer 

can write the transfer function for a planar transducer in terms of the 
diffraction correction, pD% , used in Chapter 5 (see Eq. (5.20)) as 

( ) ( ) ( )2
1 0 12 1 0/ 2 exp 2 ,planar

A p p pt D k a R R ik Rω = %  (8.72)

where  

( ) ( ) ( ) ( ){ }0 12 1 exp .pD u iu J u i J u ⎤= ⎡ − −⎣ ⎦
%  (8.73)

Comparing Eqs. (8.69) and (8.71) and using Eq. (8.72) for the planar case, 
we see that for the focused case we have 

( ) ( ) ( )*2
1 0 12 1 0/ 2 exp 2foc

A p p pt D k a R R ik Rω ⎡ ⎤= − ⎣ ⎦
%  (8.74)

where [ ]* denotes the “complex conjugate”. Thus, by making the changes 
indicated by Eq. (8.74) one can simply use the same diffraction correction 
obtained for the planar case for this focused case as well. Note, however, 
that while in the planar transducer case the interface is not restricted to 

function for the planar transducer case. For the geometry of  Fig.  8.31 we 
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being at a particular distance from the transducer the interface must be 
placed at the geometrical focal length of the focused transducer in order to 
use Eq. (8.74). 

8.14 Acoustic/Elastic Transfer Function – Rectangular 
Transducer 

The results of the previous section can also be used to obtain the acoustic/ 
elastic transfer function for a rectangular piston transducer that is either 
planar or cylindrically focused and receiving the waves reflected from the 
front surface of a block (same setup as shown in Fig. 8.31). First, consider 
a planar rectangular transducer of length 2a in the x% -direction and 2b in 
the y% -direction and let the distance 0R D=  (see Fig. 8.31). Then from  
Eq. (8.71) the acoustic/elastic transfer function, rect

At , is 
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 (8.75)

But in this case we have 

( ) ( )
22 2 /

1
1 0

4exp ,
4

a a ka D
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p r
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x x Dik dx dx F x dx
D k
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%

%  (8.76)

where ( )F x is the Fresnel integral 

( ) ( )2

0

exp / 2 .
x

F x i t dtπ= ∫  (8.77)

and similarly 

( ) ( )
22 2 /
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b b kb D
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∫ ∫ ∫
%

%  (8.78)
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For the integral of the Fresnel function we can use the relationship [8.6] 
(which comes directly from integration by parts) 

( ) ( ) ( )
22

11

2exp / 2
xx

xx

iF x dx x F x i xπ
π

⎡ ⎤= +⎢ ⎥⎣ ⎦∫  (8.79)

to obtain 
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(8.80)

We can express Eq. (8.80) in terms of a diffraction correction term, rect
pD% , 

where 

( ){
( )

( ) ( )

2
1

2
12

1

2 2
1 12

1

4 2 /

exp / 1
2 /

2 / exp / 1
2 /

rect
p p

p

p

p p

p

D F k a D
i

i ik a D
k a D

iF k b D ik b D
k b D

π

π π

π
π π

= +

⎫⎪⎡ ⎤− ⎬⎣ ⎦
⎪⎭

⎧ ⎫⎪ ⎪⎡ ⎤⋅ + −⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

%

 
(8.81)

so that  

( ) ( ) ( )2
1 12 1/ 2 exp 2 .rect rect

A p p pt D k a D R ik Dω = %  (8.82)

Figure 8.32 shows a plot of rect
pD%  versus frequency for a rectangular trans-

ducer where 50.8D =  mm and 12.7a =  mm, 6.35b =  mm. For comparison 
the corresponding diffraction correction for a 12.7 mm radius circular 
transducer (Eq. 8.73) is also plotted in Fig. 8.32. It can be see that the 
rectangular transducer has a very similar behavior to the circular probe and 
that both diffraction corrections asymptotically approach a value of two for 
high frequencies. 
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Fig. 8.32. The diffraction correction, rect

pD% , for a rectangular 25.4 x 12.7 mm 
rectangular transducer (solid line) and the corresponding diffraction correction, 

pD% , for a 12.7 mm radius circular transducer (dashed line). In both cases the 
distance D = 50.8 mm. 

We can also consider a rectangular cylindrically focused transducer 
in the same fashion as done for the spherically focused transducer. For a 
transducer with cylindrical focusing of radius R in the y% -direction, we can 
introduce the phase term ( )2

1exp / 2pik y R− %  into the Rayleigh-Sommerfeld 

equation and follow the same steps as in the spherically focused transducer 
case to obtain the acoustic/elastic transfer  function, cyl

At , in the form 
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where we must set the distance, D R=  , as in the spherically focused case. 
Again, we can express these integrations in terms of Fresnel integrals. 
Since the details are the same as for the planar case, we just give the end 
result, namely 
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( ) ( ){
( )

( ) ( )

2
12 1 1

2
12

1

*

2 2
1 12

1

4exp 2 2 /

exp / 1
2 /

2 / exp / 1 ,
2 /

cyl
A p p

p

p

p p

p

t R ik R F k a R
i

i ik a R
k a R

iF k b R ik b R
k b R

π

π π

π
π π

= +

⎫⎪⎡ ⎤− ⎬⎣ ⎦
⎪⎭

⎧ ⎫⎪ ⎪⎡ ⎤⋅ + −⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

 
(8.84)

where again { }* indicates the complex conjugate. 
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8.16 Exercises 

1. The exact on-axis pressure for a circular piston transducer was given by 
Eq. (8.20) and the far field approximation for this same pressure was given 
by Eq. (8.21). Using MATLAB, write a script that computes these two 
pressure expressions and plots the magnitude of the normalized pressure, 

0/p cvρ , versus the normalized distance, /z N , for both of these express-
ions on the same plot, where N is the near field distance. Let the transducer 
radius a = 6.35 mm, the frequency f = 5 MHz, and the wave speed of the 
fluid c = 1480 m/sec. Show both pressure plots over the range z/N = 0.2 to  
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z/N = 4.0. What can you conclude about when Eq. (8.21) is valid? 
 
2. Equation (8.31) shows that the angular distribution of the far field 
radiation field of a circular planar piston transducer is controlled by the 
directivity function ( ) ( )1 sin / sinJ ka kaθ θ . Using MATLAB, write a func-
tion that calculates the angle where the amplitude of this directivity 
function drops by 6 dB from its maximum on-axis value. Use this function 
to determine the 6 dB angular spread of a 0.5 inch diameter piston 
transducer radiating into water at frequencies of 2.25, 5, and 10 MHz. 
 
3. Equation (8.19) is the Rayleigh-Sommerfeld integral for a planar piston 
transducer radiating into a fluid. Consider this equation for a rectangular 
transducer with width 2a in the x-direction and width 2b in the y-direction. 
In the paraxial (Fresnel) approximation we can approximate the radius 

( ) ( )2 22r z x x y y′ ′= + − + − appearing in the denominator of that equation 

as 2 2 2r R x y z≅ = + + , where ( ), ,x y z  is a point in the fluid and ( ), ,0x y′ ′  
is a point on the transducer face. In the phase term of Eq. (8.19), however, 
we approximate the radius r instead as  

( ) ( )

( ) ( )

2 2

2 2

2 2

1

2 2

x x y y
r z

z z
x x y y

z
z z

′ ′− −
= + +

′ ′− −
≅ + +

 

 

Thus, with these approximations Eq. (8.19) for a rectangular transducer is: 
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Show that this expression can be written as the product of the difference of 
two Fresnel integrals in the form 
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where ( )F x is the Fresnel integral as defined in Eq. (8.77). Using the 
MATLAB function fresnel_int and the above expression, write a MATLAB 
function that computes this pressure wave field at any point ( ), ,x y z  in  
the fluid. For a 6mm by 12mm rectangular transducer radiating into water  
(c = 1480 m/sec) at 5 MHz, plot the magnitude of the normalized on-axis 
pressure for distances z = 6 mm to z = 100 mm. For the same transducer 
plot cross-axis pressure profiles in the x- and y-directions at z = 45, 70 mm. 

 
4. Write a MATLAB function that returns the normalized on-axis pressure, 

0/p cvρ , versus distance for a spherically focused piston transducer (see 
Eq. (8.37)). The input arguments of the function should be the distance 
values (in mm), the frequency (in MHz), the radius (in mm), the geo-
metrical focal length (in mm), and the wave speed (in m/sec). Use this 
function to find the location of the true focus (i.e. the distance to the 
maximum pressure) for a 12.7 mm (0.5 inch) diameter, 101.6 mm (4 in.) 
focal length transducer radiating into water at 5, 10, and 20 MHz. What 
can you conclude about the relationship between the location of the true 
focus versus the geometrical focal length? 
  
5. Equation (8.20) gives the exact on-axis pressure for a planar immersion 
transducer at a single frequency. Ultrasonic NDE transducers, however, do 
not normally operate at a single frequency but are driven by a voltage 
pulse and hence contain a spectrum of frequencies that generate a time 
domain pulse. The near field behavior of such a pulsed transducer does not 
show nearly the same strong near field structure as a single frequency 
model suggests.  

Write a MATLAB function that computes the normalized pressure, 
0/p cvρ , at a given on-axis  distance at many frequencies and multiplies this 

pressure at each frequency  by the MATLAB function spectrum1 written 
for exercise 1 in Appendix A. The function should evaluate this product at 
1024 positive frequencies ranging from 0 to 100 MHz and then use the 
Fourier transform IFourierT defined in Appendix A to obtain the time-
domain pulse generated by the transducer at the given location. Finally, the 
function should compute the peak-to-peak magnitude of this pulse and 
return that value. The inputs to the MATLAB function should be the 
distance (in mm), the transducer radius (in mm), the wave speed of the 
fluid (in m/sec), the center frequency, fc (in MHz), and the bandwidth, bw 
(in MHz).  
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Use this function to evaluate the peak-to peak response of a trans-
ducer radiating into water for 200 points ranging from 10 to 400 mm and 
plot this peak-to-peak response versus distance. Take the radius of the 
transducer to be 6.35 mm (0.25 in.), the center frequency fc = 5 MHz and 
the bandwidth bw = 2 MHz. 




