
10 Flaw Scattering 

Ultrasonic beam models can simulate the fields incident on a flaw in an 
ultrasonic inspection. Given those incident fields, we then must also 
determine the scattered waves produced by the interactions of those fields 
with the flaw. For complex flaw morphologies numerical methods are 
generally needed to solve for these scattered waves. For a number of 
simple flaw shapes and types, however, we can model some important 
characteristics of the flaw scattering process explicitly with approximate 
methods. In this Chapter we will describe two such approximations – the 
Kirchhoff approximation and the Born approximation – and also give a 
brief overview of a number of other flaw scattering methods. 

10.1 The Far-Field Scattering Amplitude 

To describe flaw scattering we will first consider the simple case shown in 
Fig. 10.1 where a plane wave in a fluid strikes an immersed object, 
generating scattered waves that travel from the “flaw” in all directions. At 
a distance of many wavelengths from the flaw, the flaw acts like a point 
source generating a spherical wave, as shown in Fig. 10.1. We can express 
the pressure in this spherical wave as 
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where 0p is the pressure amplitude of the incident wave, ( );i sA e e  is the 
far-field scattering amplitude of the flaw in the se  direction due to an 
incident wave traveling in the ie  direction. The scattering amplitude is 
also a function of frequency but for economy of notation we will not show 
this frequency dependence explicitly. Note that we have implicitly 
assumed harmonic waves of ( )exp i tω−  time dependency, a factor that 
also will  not be shown  explicitly. The variable  sr   is the  distance from  a  
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Fig. 10.1. The spherical P-wave scattered in the far-field from a “flaw” in a fluid 
due to an incident wave of pressure amplitude 0p . 

fixed point at the flaw (usually taken to be the flaw “center”) to the point 
in the fluid where the scattered pressure is being determined, and pk  is the 
wave number for compressional waves in the fluid.  

 It can be shown that the far-field scattering amplitude is related to 
the total fields (incident plus scattered fields) on the surface of the flaw 
through a surface integral given by [Fundamentals]: 
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where n is the unit outwards normal to the surface of the flaw pointing into 
the fluid, sx  is a general point on the surface, fS , and ( ) 0, /sp p pω= x%  is 
the pressure normalized by the incident wave pressure amplitude. Note that 
the far-field scattering amplitude as defined here has a dimension of 
length. The unit vector ie  does not appear explicitly in Eq. (10.2) but the 
fields do depend on this direction so it is included as an argument of the 
scattering amplitude. Since / np n i vωρ∂ ∂ = from the equation of motion for 
the fluid the scattering amplitude depends on both the pressure, p, and the 
normal component of the velocity, nv , on the surface. It is possible to 
specify one of these variables. For example, for a void, we can set 0p = , 
while for a rigid, immobile scatterer we would have 0nv = . For an elastic 
inclusion, we would have to instead specify conditions of continuity of the 
tractions and normal velocity at the  surface. Given the incident waves and 
a  set  of  boundary conditions  of  one  of  these  types, it  is  then  possible  
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Fig. 10.2. The spherical P- and S-waves scattered in the far-field from a flaw in an 
elastic solid due to an incident wave of displacement amplitude 0U . 

to formulate a boundary value problem and solve for the unknown fields 
on the surface of the scatterer [Fundamentals].  

 For ultrasonic NDE inspection problems the flaws of interest are 
located in an elastic solid. The scattering of elastic waves is more complex 
than the fluid case just considered, but again at a distance of many 
wavelengths from the flaw the scattered waves are just spherical waves, as 
shown in Fig. 10.2. In this case a flaw generates both scattered spherical  
P-waves and S-waves. The displacement of the solid produced by these 
scattered waves can be written as 
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where 0U  is the displacement amplitude of the incident wave, 

( ),k p sα α =  are the wave numbers for P- and S-waves, and ( );i s
β αA e e is 

the vector far-field scattering amplitude for a scattered wave of type α 
( ),p sα = due to an incident wave of type β ( ),p sβ = . The vectors i

βe  
and s

αe  are unit vectors in the incident and scattered wave directions, 
respectively [Note: lower case p and s superscripts will be used here to 
denote P-waves and S-waves, respectively, while an s subscript will denote 
a “scattered” wave unit vector]. Far-field scattering amplitudes for both  
P-waves and S-waves can be written in terms of a single vector-valued 
function, ;α βf , where [Fundamentals]: 
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and the vector far-field scattering amplitudes for P-waves and S-waves are 
given by 
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for ( ),p sβ = . The vectors li  are unit vectors along a set of Cartesian 
coordinate axes. The kn  terms in Eq. (10.4) are the components of the unit 
outward normal to the flaw surface (see Fig. 10.2) and ijklC  is the fourth 
order elastic constants tensor, which here is taken to be for an isotropic 
elastic material. The stress and displacement components in Eq. (10.4) are 
normalized by the displacement amplitude of the incident wave, i.e. 

0 0/ , /ij ij j jU u u Uτ τ= =% % . From Eq. (10.5) it can be seen that the polari-
zation of the scattered P-wave is in the p

se  direction while the polarization 
of the scattered S-wave is perpendicular to the s

se  direction since 
( ); 0s s

i s s
β ⋅ =A e e e .  

 In an ultrasonic flaw measurement system the output is a voltage 
which is a scalar quantity. Thus, if the scattering amplitude appears 
explicitly as part of a model for this measured voltage – which it does 
under certain conditions, as discussed in the next Chapter – there must be a 
specific scalar function of the vector scattering amplitude that is related to 
the output voltage. In the next Chapter it will be shown that the appropriate 

( ) ( ) ( ); ; .i s i sA β α β α α= ⋅ −e e A e e d  (10.6)

The unit vector αd  is the polarization vector of a wave of type α (the same 
type as the scattered wave) that travels from the receiving transducer 
(acting like a transmitter) to the flaw along a completely reversed path 
from the path that the scattered waves take from the flaw to the receiving 
transducer  (see Fig. 10.3). This  polarization vector  is  defined  when  one  

scalar function that appears in a model of the entire ultrasonic measurement 
system is the scalar component 
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Fig. 10.3. The polarization, αd , of the wave traveling from the receiver (acting as 
a transmitter) to the flaw along a path that is completely reversed from the actual 
received wave traveling from the flaw to the receiving transducer. For a scattered 
P-wave (α = p) we have s

α α= −d e while for a scattered S-wave αd  is perpendicular 
to se . 

solves for the waves propagated from the receiving transducer to the flaw. 
Note that the choice of sign of the polarization vector is arbitrary. For 
example, for a plane P-wave traveling in the e-direction with velocity 
given by V=v e , we could take the polarization p =d e  (as is normally done) 
and write pV=v d or we could choose p = −d e  and write pV= −v d instead. 
The velocity of the wave is unaffected by this choice. Choosing a different 
sign on the polarization vector will affect the sign of the amplitude, as 
shown by this simple example, or it can affect individual parts of the total 
expression for the wave field such as transmission or reflection coefficients 
since those coefficients depend on the choice of the polarization direction 
(see Appendix D where the transmission coefficients were defined for 
specific choices of P-wave and S-wave polarizations). Sign changes of the 
transmission/reflection coefficients and polarizations, however, cancel so 
again the total wave field is unaffected by the choice for the direction of 
the polarization. However, with a given choice of the polarization vector 
we must be careful to use the transmission/reflection coefficients consistent 
with that choice. 

 Using Eqs. (10.4) and (10.5) in Eq. (10.6), the scalar scattering 
component, ( );i sA β αe e  for both P-waves and S-waves is given by 
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Fig. 10.4. A crack modeled as an open surface in a solid that is obtained by letting 
the thickness, t, go to zero of a thin volumetric shape, as shown, where the stress 
vector is zero on both sides of the crack but the displacement vector is allowed to 
have a displacement discontinuity given by ( ),su ω + −∆ = −x u u , where ,+ −u u  
are displacements on opposite sides of the crack at the same location on the open 
surface. 
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       (no sum on s, α ) 
 

Equation (10.7) gives the far-field scalar scattering response of a general 
volumetric flaw. One can also use this result and a limiting argument to 
obtain the response of a crack-like flaw where the crack is modeled as a 

0lk kn =% . The 
displacement components, however, can be different from one face of the 
crack to the other, leading to displacement discontinuities, ( ),j su ω∆ x% , on 
the crack (see Fig. 10.4). The scattering amplitude of Eq. (10.7) then reduces 
to [Fundamentals] 
 
 
 
 

τthe crack are stress-free, we have on both faces of the crack 
zero volume open surface (Fig. 10.4). If one assumes that the faces of 
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Fig. 10.5. The Kirchhoff approximation, where the fields on the “lit” surface of 
the flaw are assumed to be those obtained by plane wave interactions with a plane 
(dashed-dotted line) whose normal coincides with that of the flaw surface. On the 
remainder of the flaw surface (the shaded “shadow” region shown) the fields are 
assumed to be identically zero. 
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       (no sum on s, α ) 
 

where now S is the (open) surface of the crack and n is the unit normal to 
that open surface. 

10.2 The Kirchhoff Approximation for Volumetric Flaws 

One approximation that has been frequently used to describe the scattering 
of volumetric flaws or cracks is the Kirchhoff approximation [Funda-
mentals]. Consider first the volumetric flaw case. In this approximation, 
that part of the flaw surface where the incident wave (which is taken as a 
plane wave) can directly strike the surface is called the “lit” surface, 

litS (Fig. 10.5). On the lit surface it is assumed that the interaction of the 
incident plane wave with the surface is identical to that of the incident 
wave with a plane interface whose normal coincides locally with the 
surface normal, n. Since we can solve for the interaction of a plane  
wave with a plane interface, we can write down explicit expressions for 
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both the Kirchhoff approximation displacement components, K
ju% , and 

stresses, K
lkτ% , on the lit surface as [Fundamentals] 
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where i

βd is the polarization vector for an incident wave (of type β ) 
traveling in the i

βe  direction and m
rd  is the polarization of a reflected 

waves at the interface (of type m) traveling in the m
re direction. The 

reflection coefficients for a reflected wave of type m due to an incident 
wave of type β are the ;

12
mR β . On the remaining part of the flaw surface 

where the incident wave cannot strike it directly, it assumed that the fields 
are totally absent and 0j lku τ= =% % . Then Eq. (10.7) becomes 
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       (no sum on s, α ) 
 

The Kirchhoff approximation is a high frequency approximation that 
allows us to avoid having to solve a boundary value problem in order to 
determine the far-field scattering amplitude. In general, the integrations in 
Eq. (10.10) must still be done numerically, but for the special case of the 
pulse-echo response of a void one can obtain some simple and explicit 
results. In that case we consider a scattered wave of the same type as the 
incident wave and let the scattered wave direction be opposite to that of the 
incident wave so that s i

α β= −e e . Since we are considering a void we also 
have 0lk knτ =% on the surface. Then Eq. (10.10) reduces to 
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Fig. 10.6. Magnitude of the far-field pulse-echo P-wave scattering amplitude 
versus frequency for a 1 mm radius void in steel ( 5900pc =  m/s) in the Kirchhoff 
approximation. 

 

Equation (10.11) can be simplified even further since it can be shown by a 
combination of analytical and numerical evaluations that [10.1] 
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and the pulse-echo far-field scattering amplitude of the void becomes simply 
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Equation (10.13) is identical to the pulse-echo response of a void using a 
fluid model (see Eq. (10.2)) instead [Fundamentals]. It is a very important 
result since it shows that: 

 For any stress-free flaw in an isotropic elastic solid the Kirchhoff 
approximation for the pulse-echo far-field scattering amplitude component 
that appears in an ultrasonic measurement model is identical to the 
Kirchhoff approximation for the scalar scattering amplitude of a void in a 
fluid. 
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Fig. 10.7. The time domain pulse-echo impulse response of a spherical void in a 
solid in the Kirchhoff approximation, showing the leading edge delta function 
response followed by the response of the lit surface. 

 In this Chapter we will use this result to carry out the integrations 
in Eq. (10.13) explicitly for a number of important canonical scattering geo-
metries including a spherical void, a flat elliptical crack (see Eq. (10.32)), 
and a side-drilled hole (see Eq. (10.53)). For a spherical void of radius b, 
for example, Eq. (10.13) gives [Fundamentals] 
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Figure 10.6 plots the magnitude of this scattering amplitude for a spherical 
void in steel. The characteristics of this plot can be better understood if we 
Fourier transform Eq. (10.14) into the time domain. This leads to the 
impulse response of the flaw, ( ); ,i sa tβ αe e , given by [Fundamentals] 
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where δ is a delta function (see Appendix A) and 
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Figure 10.7 shows a plot of this time domain scattering amplitude. When 
the incident wave first reaches the flaw, there is a delta function response 
from the point where the incident wave first touches the flaw. This leading  
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Fig. 10.8. The magnitude of the normalized scattering amplitude versus frequency 
for the pulse-echo P-wave response of a spherical void in the  the Kirchhoff 
approximation (dotted line) and for the exact separation of variables solution 
(solid line). 

edge response occurs at time 2 /t b cβ= − , where t = 0 is when the wave 
front reaches the center of the flaw, followed by a constant response that 
exists as the wave front sweeps across the lit surface. When the wave front 
reaches the boundary between the lit surface and the shadow zone of the 
flaw the response drops to zero. It is the interference of the leading edge 
response and the remaining lit surface response that causes the oscillations 
seen in Fig. 10.6. At very high frequencies, only the leading edge response 
remains, leading to the plateau seen in Fig. 10.6. 

 The sphere is one of the few shapes where we can obtain the exact 
far-field scattering amplitude by the method of separation of variables 
[Fundamentals]. Thus, we can compare the Kirchhoff approximation to the 
exact results for the spherical void just considered. Figure 10.8 shows this 
comparison made in the frequency domain for the normalized magnitude 
of the far-field scattering amplitude computed for the pulse-echo P-wave 
response of a spherical void. The two results agree at high frequencies, 
which show that the leading edge delta function response in the Kirchhoff 
approximation agrees with this same response in the exact solution. The 
frequency of oscillations in the exact solution is different from that in the 
Kirchhoff approximation because in the exact solution the oscillations are 
caused primarily by an interference of the leading edge response with a 
creeping wave that travels around the flaw and returns, as shown 
schematically  in  Fig. 10.9. This  creeping  wave can  be seen  explicitly  in  
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Fig. 10.9. The scattering from a spherical void in (a) the Kirchhoff approximation, 
where the response comes from a front surface leading edge response (solid 
arrows) and the response from the lit surface (dashed arrows), and in (b) the exact 
solution case where there are contributions from the leading edge and front surface 
but where there also exists a creeping wave that travels around the sphere as 
shown. 

 

 
Fig. 10.10. The exact time domain pulse-echo impulse response (solid line) of a 
1 mm radius spherical void in a solid as calculated from a separation of variables 
solution with the delta function removed, showing the response from the lit 
surface and a creeping wave. The same response in the Kirchhoff approximation 
(dashed line). Wave speeds: pc = 6000 m/sec, 3200sc = m/sec. 
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Fig. 10.11. The case where a stationary phase point, statx , exists on the lit surface 
of a flaw, where the scattered wave direction coincides with one of the reflected 
wave directions. 

Fig. 10.10 which shows the exact P-wave pulse-echo time domain impulse 
response of the spherical void obtained by Fourier transforming the exact 
separation of variables solution (after removal of the delta function leading 
edge response which is common to both the exact solution and the 
Kirchhoff approximation). The Kirchhoff solution is also shown in 
Fig. 10.10 for comparison purposes. 

10.3 The Leading Edge Response of Volumetric Flaws 

Although as we have seen the Kirchhoff approximation did not accurately 
represent the later arriving waves from a spherical void, it did model 
correctly the leading edge response of the flaw. This leading response is 
the dominant part of the solution at high frequencies, and in the time 
domain gives us a delta function signal from the front surface of the flaw. 
Since the delta function contains all frequencies equally whereas other 
parts of the flaw response typically go to zero as the frequency increases, 
even in real band-limited systems the leading edge response signal in the 
time domain is often the largest signal in the entire flaw response. Thus, it 
is useful to try to model this signal by itself. Fortunately, this is possible 
for general volumetric flaw types, not just voids. If we return to the 
Kirchhoff approximation (Eq. (10.10)) for a general volumetric flaw, we 
can approximate the integral in that equation at high frequencies by the 
method of stationary phase. The details are rather lengthy, but the end 
result is that in a general pitch-catch setup (which includes pulse-echo as a  
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Fig. 10.12. The case where a stationary phase point, statx , exists on the lit surface 
of a flaw, where the scattered wave direction coincides with one of the reflected 
wave directions. 

special case) the major contribution to the integral for a scattered wave of 
type α  traveling in the s

αe  direction comes from a neighborhood of a point 
on the flaw surface, called a stationary phase point, statx , where the direction 
of the reflected wave in the Kirchhoff approximation, r

αe , coincides with 
s
αe  (see Fig. 10.11). The contribution to the integral near this stationary 

phase point can then be calculated by the method of stationary phase to 
give, in the frequency domain [Fundamentals] 
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where ;
12Rα β  is the plane wave reflection coefficient (based on velocity 

ratios) between material 1 (the host material around the flaw) and material 
2 (the flaw) for a reflected wave of type α due to an incident wave of type 
β. 1 2,R R  are the magnitudes of the principal curvatures of the flaw surface 
at the stationary phase point, r

αd  is the polarization of the reflected wave 
and αd  is the polarization of the wave coming from the receiving transducer 
(acting as a transmitter). The vectors ;α βg  are given by 
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where i
βe  is the incident wave direction for a wave of type β, s r

α α=e e  is 
the reflected wave direction for a wave of type α, and ,p sc c  are the 
compressional and shear wave speeds for the host material surrounding the 
flaw, respectively. Note that one can always define the reflection 
coefficient so that the reflected wave polarization, r

αd , coincides with the 
polarization αd . In that case we have 1r

α α⋅ =d d . In all the subsequent 
results we will assume that this is true. 

 The vectors ;α βg  can be written in terms of their magnitudes and a 
unit vector, ;

q
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vector ;
q
α β = −e n  so that ; ;α β α β⋅ =g n g . We also have ; 0α β ⋅ =g t , where 

t is a unit vector in the tangent plane to the surface at the stationary phase 
point (see Fig. 10.12), which is just a statement  of Snell's law. We can 
write the quantity ; ; ;

stat er
α β α β α β⋅ = −g x g , where ;
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α β  is the distance in the 

direction n (or, equivalently, ;
q
α β−e ) at the stationary phase point from a 

fixed point (usually taken as the flaw “center”) to the tangent plane of the 
surface at n (Fig. 10.12). The ;
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α β  distance is called the equivalent radius 

of the flaw in the ;
q
α βe  direction. Thus, we can also write Eq. (10.17) in the 

form 
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 If we Fourier transform Eq. (10.19) into the time domain, the 
leading edge impulse response of the flaw is given by 
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For the special case of a pulse-echo (same mode) leading edge response, 
from Eqs. (10.19), (10.20) we have the even simpler expressions: 
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Fig. 10.13. Scattering geometry for an ellipsoidal flaw. 

( ) ( ) ( )

( ) ( ) ( )

;
12 1 2

;
12 1 2

0
; exp 2

2
0

; , 2 / ,
2

i i e

i i e

R R R
A ik r

R R R
a t t r c

β β
β β

β

β β
β β

βδ

− = −

− = +

e e

e e

o

o
 (10.21)

where ;
e er r β β= and now the reflection coefficient is just the normal incidence 

coefficient, as indicated in Eq. (10.21).  
 For a purely convex flaw shape such as an ellipsoid, as shown in 

Fig. 10.13, there can be at most only one stationary phase point on the lit 
surface. However, a stationary point may not exist on the lit surface at all 
for some combination of incident and scattered directions of a general 
pitch-catch setup. In that case, a leading edge response of the flaw is 
absent. For more general flaw shapes there may be multiple stationary 
phase points, in which case one must sum over all the leading edge 
responses.  
 For an ellipsoidal shaped flaw with semi-major axes ( )1 2 3, ,b b b  along 
the ( )1 2 3, ,u u u  directions as shown in Fig. (10.13) we have the Gaussian 
curvature term [Fundamentals] 
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and the equivalent radius is given by 
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where, recall, ; ; ;/q
α β α β α β=e g g  (see Eq. (10.18)). 
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In this case the leading edge responses for the general pitch-catch 
setup (Eqs. (10.19) and (10.20)) become 
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and for the pulse-echo case Eq. (10.21)  reduces to 
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For the particular case of a spherical void we have 1 2 3b b b b= = = , 
( );

12 0 1Rβ β = −o , and er b=  so the pulse-echo results of Eq. (10.25) reduce 
to the leading edge results obtained previously as part of the full Kirchhoff 
solution for the sphere (see Eqs. (10.14) and (10.15)). 

10.4 The Kirchhoff Approximation for Cracks 

Our crack scattering model (Eq. (10.8)) considers the crack as a stress-free 

( ),sx ω + −∆ = −u u u . In the Kirchhoff approximation on the lit part of the 
front surface of the crack we would have K

j ju u+ =  and on the remainder of 
the front surface and the entire back surface (assuming the crack does not 
fold over so that part of the back surface can also be a “lit” surface) we 
would have zero displacements. Thus, the Kirchhoff approximation for a 
crack in an elastic solid gives 

( ) ( ) ( )2

1; exp .
4

lit

K
i s lkpj l sk p j s s s

S

A ik C d e n u ik dS
c

β α α α α
α α

απρ
⎡ ⎤= − ⋅⎣ ⎦∫e e x e x%  (10.26)

      (no sum on s,α ) 
 

open surface on which there is a displacement discontinuity 
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Fig. 10.14. Scattering geometry for a flat elliptical crack. 

For the special case of pulse-echo we can again use Eq. (10.12) and write 

( ) ( ) ( ) ( ); exp 2 .
2

lit

i i i s i s
S

ik
A ik dSββ β β β

βπ
−

− = ⋅ ⋅∫e e e n x e x  (10.27)

Thus, the same Kirchhoff approximation expressions we used for the 
volumetric void can also be used for a crack. The only difference is that in 
Eqs. (10.26) and (10.27) we are integrating over the lit portion of an open 
surface of the crack rather than the lit part of a closed surface surrounding 
a volumetric flaw.  

 Now, consider the special case when the crack is a flat surface. 
Then Eq. (10.26) can be written as 

( ) ( ) ( )
;

; exp ,
2i s i s s s

S

ik CA i k k dS
α β

β α β αα
β απ
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where 
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In this case the lit surface is now the entire surface, S, of the flaw. For the 
flat crack in pulse-echo, from Eq. (10.27) 

( ) ( ) ( ) ( ); exp 2 .
2

i
i i s i s

S

ik
A ik dS

β
ββ β β

βπ

− ⋅
− = ⋅∫

e n
e e x e x  (10.30)

For the elliptical flat crack geometry shown in Fig. 10.14, the integrals in 
Eqs. (10.28) and (10.30) can be performed explicitly. We find for the 
pitch-catch case [Fundamentals] 
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Fig. 10.15. The equivalent radius, ;

er
α β  for the scattering by an elliptical crack 

shown as the distance from the center of the ellipse to a plane that is normal to 
;

q
α βe  and touches the crack edge at a single point. 

 
Fig. 10.16. The pulse-echo response of a circular flat crack of radius b showing 
that the equivalent radius siner b θ=  where θ  is the angle between the incident 
wave direction and the unit normal to the crack. 
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and for the pulse-echo case 
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where 

( ) ( )2 2; 2 ; 2 ;
1 1 2 2e q qr b bα β α β α β= ⋅ + ⋅e u e u  (10.33)
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Fig. 10.17. The magnitude of the P-wave pulse-echo far-field scattering amplitude 
versus frequency calculated in the Kirchhoff approximation for a 1 mm radius 
circular crack in steel with an angle of incidence of 10o  from the crack normal. 

 
Fig. 10.18. (a) The “generalized normal incidence” case for pitch-catch where ;

q
α βe  

is parallel to the crack normal, and (b)  the pulse-echo case where i s
β β= −e e  is 

parallel to the normal. 
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and again we have ; ; ;/q
α β α β α β=e g g  (see Eq. (10.18)). For the pulse-echo 

case we have let ;
e er r β β= . As in the volumetric flaw case, we can interpret 

;
er
α β  as an “equivalent radius” for a given setup, as shown in Fig. 10. 15. 

In this case the equivalent radius is the distance in the ;
q
α βe  direction from 

the center of the ellipse to a plane whose normal is ;
q
α βe  and is touching 

the edge of the crack at a single point.  
For the special case of the circular crack 1 2b b b= =  so that we 

find in the pitch-catch case 
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and in the pulse-echo case 
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In the pulse-echo response of the circular crack we have cosi θ⋅ = −e n  
and siner b θ=  (see Fig. 10.16) so that 

( ) ( )1
cos; 2 sin .

2sini i
ibA J k bβ β

β
θ θ
θ

− =e e  (10.36)

Figure 10.17 plots the behavior of the P-wave pulse-echo circular crack 
response (Eq. (10.36)) for a 1 mm radius crack in steel at an angle of 
incidence 10θ = o . Unlike a spherical void the crack response has very 
strong oscillations that decrease with increasing frequency. At normal 
incidence, however, the crack scattering response is quite different. In the 
pitch-catch case we can have a similar situation. We will call either of 
these special cases “generalized normal incidence”. At generalized normal 
incidence ;

q
α βe  is parallel to the crack normal, n. In the pulse-echo case 

this simply implies that the incident wave direction, i
βe , is parallel to n 

(Fig. 10.18). In either case we have 0er →  and 0θ →  so that Eq. (10.34) 
for the pitch-catch case becomes 

( )
2 ;

;
2i s

ik b CA
α β

β α α=e e  (10.37)

and for the pulse-echo case 
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Fig. 10.19. The magnitude of the P-wave pulse-echo far-field scattering amplitude 
versus frequency calculated in the Kirchhoff approximation for a 1 mm radius 
circular crack in steel at normal incidence. 
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2i i

ik b
A ββ β− =e e  (10.38)

so that the crack response increases linearly with frequency as shown in 
Figure 10.19.  

 We can understand some of this frequency domain behavior if we 
Fourier transform our results back into the time domain to obtain the crack 
impulse response. From Eq. (10.35) for the pulse-echo response of the 
elliptical crack, for example, we find for the case when the incident wave 
direction is at oblique incidence to the crack normal [Fundamentals] 
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and for the normal incidence case, where 

( ) 1 2; ,
2i i

ik b b
A ββ β− =e e  (10.40)
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Fig. 10.20. (a) The time domain pulse-echo impulse response of an elliptical crack 
calculated in the Kirchhoff approximation at oblique incidence, and (b) at normal 
incidence. 

we find 

( ) ( )1 2; , .
2i i

d tb ba t
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β β

β

δ−
− =e e  (10.41)

These cases are both plotted in Fig. 10.20. One can see that in the oblique 
incidence case (Fig. 10.20 (a)) the crack signal has an anti-symmetrical 
form, with two distinct peaks. These peaks are called crack flashpoint 
responses. The first flashpoint occurs when the incident wave front first 
touches the crack and the second flashpoint occurs when the incident wave 
front last touches the crack. The interference of the frequency components 
of these two flashpoint responses is what causes the strong oscillations in 
the frequency domain response for non-normal incidence. At normal 
incidence, the two flash point signals merge to form a “doublet” signal as 
shown in Fig. 10.20 (b). The doublet is represented by the derivative of a 
delta function, as given in Eq. (10.41). Note that since the Fourier trans-
form of the delta function is just unity, we can write formally 

( ) ( ) ( )1 1 exp
2

t i t dδ ω ω
π

+∞

−∞

= −∫  (10.42)
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Fig. 10.21. The magnitude of the pulse-echo scattering amplitude response versus 
angle calculated in the Kirchhoff approximation for a 1 mm radius circular crack 
in steel at a frequency of 5 MHz. 

from which we obtain 

( ) ( )1 exp
2

d i i t d
dt
δ ω ω ω

π

+∞

−∞

= − −∫  (10.43)

Equation (10.43) shows that the Fourier transform of the derivative of the 
delta function is just iω−  so that taking the Fourier transform of Eq. (10.41), 
we do indeed obtain Eq. (10.40). Thus, the linearly increasing frequency 
domain response is just a consequence of having a doublet time domain 
response for the crack at normal incidence. 

A flat crack is a very specular scatterer since in pulse-echo its 
scattering response is large when the incident wave strikes a crack at 
normal incidence but decreases rapidly as a function of the angle, θ, that 
the incident wave makes with the crack normal, as shown in Fig. 10.21.  

10.5 Validity of the Kirchhoff Approximation 

The Kirchhoff approximation is a very useful tool for modeling the 
scattering of volumetric flaws and cracks. For the volumetric flaw case, the 
Kirchhoff  approximation  predicts a  leading edge response  that  is in fact  
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Fig. 10.22. A comparison of the peak-to-peak pulse-echo responses of a spherical 
void of radius b as calculated by the Kirchhoff approximation and the method of 
separation of variables where the non-dimensional wave number and bandwidth 
are varied. (a) Pulse-echo P-wave responses. (b) Pulse-echo SV-wave responses. 
White region: peak-to-peak differences < 1 dB, Gray region: differences > 1 dB 
and <1.5 dB, Black region: differences > 1.5 dB. 
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special cases where the later arriving signals may be larger than the 
leading edge response, the Kirchhoff approximation will accurately model 
the amplitude of the flaw response, as measured, for example, by the 
maximum peak-to-peak amplitude of the time domain wave form. This 
fact can be demonstrated for the pulse-echo response of a spherical void by 
comparing wave forms synthesized by the method of separation of 
variables (discussed in section 10.8) and the Kirchhoff approximation. In 
this case the scattering amplitude was multiplied by a Gaussian window 
having a center frequency, cf , and bandwidth, bw, (see Appendix A for an 
example). The result was then inverted into the time domain with a Fast 
Fourier Transform and the peak-to-peak value of the wave form was 
obtained. In order to compare the peak-to-peak values obtained in this 
fashion using either the method of separation of variables or the Kirchhoff 
approximation, it is necessary to have a practical criterion on when the 
Kirchhoff approximation is accurate. Since NDE inspection setups often 
have an uncertainty of 1-1.5 dB or greater in the amplitudes of the signals 
measured (due to experimental setup errors, noise, etc.) we will label the 
Kirchhoff approximate accurate if the peak-to-peak amplitude of the signal 
that it predicts is less than 1 dB different from the separation of variables 
result.  

Figures 10.22 (a), (b) shows the results of simulating the peak-to-
peak pulse-echo P-wave and SV-wave responses of a spherical void of 
radius b at different Gaussian window center frequencies and bandwidths. 
The white region in that figure is where the Kirchhoff and separation of 
variables solutions agree within 1 dB while the gray region is where the 
responses differ by more than 1 dB but less than 1.5 dB, and the black 
region is where the responses differ by 1.5 dB or more. The non-
dimensional wave numbers, 2 /p c pk b f b cπ=  and 2 /s c sk b f b cπ=  shown in 
Fig. 10.22 were computed at the center frequency, cf , of the Gaussian 
window and the bandwidth is given as a percentage of that center 
frequency value. For the P-wave case for values of 4.5pk b >  it was found 
that the Kirchhoff approximation was accurate for all bandwidths but that 
below this value the bandwidth began to also play a role. However, for 
sufficiently large bandwidths Fig. 10.22 (a) shows that the Kirchhoff 
approximation remains accurate to wave numbers as small as 1pk b = in the 
P-wave case. At wave numbers 1pk b <  there may be cases where the 

exact at high frequencies. Thus, as long as the flaw is not too small so that 
the later arriving waves can merge with this leading edge response or for 

differences also are less than 1 dB but  these  only arise  accidentally  from  
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Fig. 10.23. In a general pitch-catch setup a flat crack generates a large specularly 
scattered signal when the scattered wave direction (and wave type) coincides with 

i.e. where s s
s rθ θ=  or p p

s rθ θ=  and where the reflected angles, ,p s
r rθ θ  are given in 

terms of the incident angle, i
βθ , by the relations ( )sin / sinp

r p ic c β
βθ θ= , 

( )sin / sins
r s ic c β

βθ θ= . 

canceling errors since the Kirchhoff approximation and exact solution can 
be shown analytically to have different low frequency limits. Figure 
10.22 (b) shows that in the case of shear waves, the wave number sk b  
must be greater than 10 for the Kirchhoff approximation to remain valid 
for all bandwidths and that from sk b = 10 to sk b = 6 approximately there 
are bandwidths effects.  

Thus, while formally the Kirchhoff is a high frequency 
approximation where one assumes 1kb >> , we see that this approximation 
remains useful and accurate in predicting pulse-echo peak-to-peak signal 
amplitudes for spherical voids at much lower frequencies and/or flaw 
sizes. It is also clear from Fig. 10.22 that bandwidth as well as 
frequency/size plays a role in how well the Kirchhoff approximation can 
perform. 

For ideal flat cracks, the Kirchhoff approximation also accurately 
models the pulse-echo amplitude of the crack response when the incident 
wave direction is normal to the crack or in pitch-catch when the scattered 
wave direction is along a reflected wave direction as predicted by Snell's 
law (see Fig. 10.23). In either of these generalized normal incidence cases, 
as discussed previously, the vector ( ); / i sc cα β β α

α β= −g e e   is parallel to the 
crack normal n. The expression for the scattering of a flat crack, 
Eq. (10.28), can be written in terms of this vector as: 

one of the reflected wave directions (and wave type) as determined by  Snell’s law, 
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Fig. 10.24. A comparison of the normal incidence peak-to-peak pulse-echo  
P-wave responses of a circular crack of radius b as calculated by the Kirchhoff 
approximation and the method of separation of variables where the non-
dimensional wave number, pk b , and bandwidth, bw, are varied. White region: 
peak-to-peak differences < 1 dB, Light gray region: differences > 1 dB and 
<1.5 dB, Black region: differences > 1.5 dB. 
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;; exp .
2i s s s

S

ik CA ik dS
α β

β α α βα
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⎡ ⎤= ⋅⎣ ⎦∫e e g x x  (10.44)

But sx  is a point lying in the plane of the crack and so we have ; 0s
α β ⋅ =g x  

and Eq. (10.44) becomes for an arbitrarily shaped flat crack (see Eqs. 
(10.37), (10.38), (10.40) for the same result for different special shapes or 
setups) 

( )
;
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2
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i s

ik C S
A

α β
αβ α

π
=e e  (10.45)

where fS  is the area of the flat crack. For all the cases where Eq. (10.45) 
holds we see a large specular response (like the doublet response shown 
earlier) that agrees with more exact scattering model predictions. Note that 
for a shear wave incident on the crack beyond the critical angle where the 
reflected P-wave disappears, the scattered S-wave response predicted by 
Eq. (10.45) will include pulse distortion since the coefficient ;Cα β  is then 
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to see in practice since at these angles the amplitude of the crack response 
will be small. 

 We can also examine the accuracy of the Kirchhoff approximation 
in predicting the pulse-echo normal incidence response of a circular crack 
in the same fashion as done for a spherical void. In this case, there is no 
separation of variables solution to compare to, but there have been 
numerical calculations done with the method of optimal truncation 
(MOOT) [10.34] for the pulse-echo P-wave response of a circular crack 
that can be used as an “exact” reference solution. Figure 10.24 shows the 
results of generating pulse-echo normal incidence P-wave peak-to-peak 
responses of a circular crack of radius b at different wave numbers, 

2 /p c pk b f b cπ= , and bandwidths, bw using the Kirchhoff approximation 
and MOOT. It can be seen from that figure that for wave numbers 

2.5pk b >  the Kirchhoff approximation is accurate for all bandwidths but 
bandwidth begins to play a role for smaller wave numbers. However, for 
sufficiently large bandwidths the Kirchhoff approximation remains accurate 
to non-dimensional wave numbers as small as 1.5pk b = . At smaller wave 
numbers the Kirchhoff approximation is generally inaccurate although again 
there may be cases where canceling errors occur. These results demonstrate 
that, as in the spherical void case, the Kirchhoff approximation remains 
accurate for cases where the condition 1kb >> is not satisfied and that 
bandwidth also plays a role in determining when the Kirchhoff approxima-
tion is accurate but it is not as strong a factor as in the spherical void case.   

For pulse-echo cases where the incident waves are not normal to 
the crack the Kirchhoff approximation predicts time domain flash point 
responses from the crack tips (see Fig. 10.20 (a)). It is commonly stated 
that the amplitudes of these signals do not agree with more exact scattering 
calculations except in a relatively small angular range (of about 20-30  
degrees) from normal incidence [10.2]. However, this conclusion has been 
reached by considering either single frequency results or simulating 
narrow bandwidth time domain responses. It will be shown here that 
bandwidth plays an important role in determining the angular range over 
which the Kirchhoff approximation can accurately predict the pulse-echo 
peak-to-peak response of a circular crack. This fact is demonstrated by 
simulating oblique incident pulse-echo scattered P-wave responses of a 
circular crack with both the Kirchhoff approximation and MOOT and then 
comparing their predicted time domain peak-to-peak crack responses. In 

complex [Fundamentals]. Such pulse distortion, however, may be difficult 

this study a  Gaussian window  having a center frequency of  10 MHz  was  



264      Flaw Scattering 

Fig. 10.25. Differences in dB between predicted peak-to-peak pulse-echo P-wave 
responses of a 0.381 mm radius circular crack in steel as calculated by the 
Kirchhoff approximation and by MOOT for a narrow band (2 MHz bandwidth, 
10 MHz center frequency) system response. 

Fig. 10.26. Differences in dB between predicted peak-to-peak pulse-echo P-wave 
responses of a 0.381 mm radius circular crack in steel as calculated by the Kirchhoff 
approximation and by MOOT for a relatively wide band (6 MHz bandwidth,  
10 MHz center frequency) system response. [For angles greater than 50o the 
differences are larger in magnitude than 2 dB so their values are off the scale of this 
figure.] 
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used with a flaw size of b = 0.381 mm. The compressional wave speed was 
taken as 6200 m/sec so that in all the cases considered the non-dimensional 
wave number was fixed at 3.86pk b = . This wave number value is 
sufficiently large so that at normal incidence there were no bandwidth 
effects (see Fig. 10.24) but for oblique incidence this is not the case. For 
example, Fig. 10.25 shows the differences in dB between predicted peak-
to-peak pulse-echo P-wave responses of the crack as calculated with the 
Kirchhoff approximation and MOOT and plotted versus angle of incidence 
for a narrow bandwidth (20%) window. In this case, differences exceeded 
1 dB at an angle of incidence of about 20 degrees. However, if the 
bandwidth of the window is changed to 60%, holding all other variables 
fixed, the differences remain smaller than 1 dB for angles as large as 
45 degrees, as shown in Fig. 10.26. For larger bandwidths, the range of 
angles where the Kirchhoff approximation is accurate is even larger. We 
have found that the precise way in which the angular range of accuracy of 
the Kirchhoff approximation varies is highly dependent on both the wave 
number and bandwidth so it is difficult to display comprehensible results 
for a wide range of cases on a single graph. Figure 10.27 shows a plot of 
the maximum incident angle at which the Kirchhoff approximation is 
accurate  (i.e. within 1 dB of the MOOT solution)  versus  bandwidth for a 
 

 
Fig. 10.27. The maximum incident angle at which the peak-to-peak pulse-echo 
flaw response predicted by the Kirchhoff approximation remains within 1 dB of 
the MOOT solution as a function of the bandwidth for the case of a P-wave 
obliquely incident on a 0.381 mm radius crack in steel ( pk b  = 5.0). 
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Fig. 10.28. Very wide-band simulated P-wave pulse-echo responses for a 0.381 
mm radius crack in steel for angles of 40, 45, 50, and 55 degrees. Kirchhoff 
approximation (solid line), MOOT solution (dashed line). 

non-dimensional wave number pk b = 5.0. Although the curves at other 
wave numbers have different shapes, the trend shown in Fig. 10.27 remains 
the same for those other cases, namely the angular range where the 
Kirchhoff approximation is accurate can be as small as 15-20 degrees for 
very narrow bandwidth systems but as high as 55-60 degrees for very wide 
band systems. 

 To understand why the Kirchhoff approximation works better as 
the bandwidth increases consider Fig. 10.28 which shows a series of wave 
forms simulated by the Kirchhoff approximation and MOOT for the same 
0.381 mm radius crack case examined in Fig. 10.27 but where all 
frequencies from 0-20 MHz were retained in calculating the time domain 
responses, yielding a very high bandwidth response. From Fig. 10.28 it can 
be seen that for angles from 40 to 55 degrees the flash point responses 
predicted by the Kirchhoff approximation agree well with those of the 
MOOT solution although the Kirchhoff approximation does predict a 
somewhat smaller trailing flashpoint signal than MOOT. Up to the 
55 degree angle case the flashpoint signals are the largest signals present in 
the crack response but the MOOT solution also contains later arriving 
responses not predicted by the Kirchhoff approximation that grow as the 
angle increases. As the bandwidth decreases, these later arriving waves 
merge with the flashpoint responses, generating peak-to-peak responses 
that can differ significantly from the Kirchhoff approximation, which only 
contains the flashpoint signals.  
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Fig. 10.29. A very wide-band simulated P-wave pulse-echo responses for a 0.381 
mm radius crack in steel for an incident angle of 75 degrees. Kirchhoff approxi-
mation (solid line), MOOT solution (dashed line). 

 

Ultimately the Kirchhoff approximation must fail at very high angles 
since in this approximation the flash point signals go to zero as the incident 
angle approaches 90 degrees while the exact solution remains finite. As an 
example of a very high angle case consider the flaw response at an angle 
of 75 degrees as shown in Fig. 10.29. At this angle the trailing flashpoint 
response predicted by the Kirchhoff approximation is much smaller than 
that given by the MOOT solution and the later arriving waves now are 
larger than either of the flashpoint responses so that the peak-to-peak 
response predicted by the Kirchhoff approximation is significantly in error. 
But as can be seen in Fig. 10.29 the Kirchhoff approximation continues to 
accurately model the first arriving flashpoint signal. It can also be seen 
from Fig. 10.29 that even for this angle the Kirchhoff approximation 
continues to model the arrival times of both flash point signals accurately. 
The arrival times of such crack tip signals are used in crack sizing methods 
such as the time-of-flight- diffraction (TOFD) method [10.3] and equivalent 
flaw sizing methods [Fundamentals], so the Kirchhoff approximation can 
be reliably used as the basis for those sizing methods. 
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Fig. 10.30. The pulse-echo scattering of a cylindrical side-drilled hole of radius b 
and length L. The incident wave direction, i

βe , is assumed to lie in a plane perpendi-
cular to the axis of the cylinder. 

10.6 The Kirchhoff Approximation for Side-drilled Holes 

Another scattering geometry that is commonly used in NDE calibration 
experiments is the side-drilled hole. This is a case where we can also obtain 
explicit results for the scattering amplitude in the Kirchhoff approximation. 
We will give the derivation here since it is not readily available in the 
literature. Consider the case of pulse-echo where the axis of a side-drilled 
hole of radius b and length L is normal to the plane of incidence (the plane 
containing the incident wave direction and the normal to the curved side of 
the side-drilled hole (Fig. 10.30). Equation (10.12) is again applicable to 
this case so the response of the side-drilled hole in the Kirchhoff approxi-
mation is given by 

( ) ( ) ( ) ( ); exp 2 .
2

lit

i i i s i s
S

ik
A ik dSββ β β β

βπ
−

− = ⋅ ⋅∫e e e n x e x  (10.46)

Now, consider a surface S ′  that extends the lit surface to infinity in the i
βe  

direction and a surface at infinity, S ∞ , that closes this extended surface as 
shown in  Fig. 10.31. Since  0i

β ⋅ =e n  on S ′  and the integrand on S ∞   will  
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Fig. 10.31. The cross-section of the side-drilled hole showing the lit surface, litS , 
and the extension of that surface by the surfaces S ′  and S ∞  to enclose the volume 
V ′ . 

 
Fig. 10.32. The cross-sectional area, zS , for the side-drilled hole geometry. 

vanish if we add a small amount of damping to the plane wave term 
( )exp 2 s iik β

β ⋅x e , we can write 

( ) ( ) ( ) ( ); exp 2
2

lit

i i i s i s
S S S

ik
A ik dSββ β β β

βπ ∞′+ +

−
− = ⋅ ⋅∫e e e n x e x  (10.47)

and then use the divergence theorem to write the integral over the closed 
surface in Eq. (10.47) as a volume integral over the volumeV ′  within this 
closed surface: 

( ) ( )
2

; exp 2 .i i i
V

k
A ik dVββ β β

βπ ′

− = ⋅∫e e e x  (10.48)



270      Flaw Scattering 

If we take the z-axis as along the incident wave direction then i zβ ⋅ =e x  
and we can write the volume element as ( )zdV S z dz=  where ( )zS z  is the 
cross-sectional area of the volume perpendicular to i

βe . For the volume 
V ′ , however, we have directly from the geometry (see Fig. 10.32) 

( ) 2 2

0

2 0
2 0

z

z b

S z L b z b z
Lb z

< −⎧
⎪⎪= − − < <⎨
⎪ >⎪⎩

 (10.49)

so that Eq. (10.48) becomes 

( ) ( )
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2
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2
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2
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i i
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Lbk
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ββ β
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∫

∫

e e
 (10.50)

In the first integral in Eq. (10.50) let /x z b= −  and perform the integration 
explicitly for the second integral, again ignoring the limit at infinity by 
adding a small amount of damping to the complex exponential. We find 

( ) ( ) ( )
2

1
2

0

2
; 1 exp 2 .i i

L k b iLbk
A x ik bx dxβ ββ β

βπ π
− = − − +∫e e  (10.51)

But from Gradshteyn and Ryzhik [10.4] 
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 (10.52)

and 3
2 2

π⎛ ⎞Γ =⎜ ⎟
⎝ ⎠

 so that 

( ) ( ) ( ) ( ) ( )
1 1; 2 2 ,

2i i

k b L i k b L
A J k b iS k bβ ββ β

β β π
⎡ ⎤− = − +⎣ ⎦e e  (10.53)

where 1J  is a Bessel function of order one and 1S  is a Struve function of 
order one. Since these special functions can be easily calculated numerically, 
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Eq. (10.53) gives us an explicit expression for the pulse-echo scattering 
amplitude of the side-drilled hole. At high frequencies [10.5] 

( ) ( )

( ) ( ) ( ) ( )

( )

2

1 1

2
1 1 1

2 12 2

2 2 2

1 exp 3 / 4 2 ,

S kb Y kb O
kb

J kb iY kb H kb

i kb
kb

π

π
π

⎛ ⎞≅ + + ⎜ ⎟
⎝ ⎠

− =

≅ ⎡ − ⎤⎣ ⎦

 (10.54)

where ( )2
1H  is a Hankel function of the second kind of order one and 1Y  is 

a Bessel function of the second kind of order one. Placing these approxi-
mations into Eq. (10.53), at high frequencies the pulse-echo scattering 
amplitude is given by 

( ) ( ); exp 3 / 4 2 .
2i i

k bLA i k bββ β
βπ

π
⎡ ⎤− ≅ −⎣ ⎦e e  (10.55)

At low frequencies, we have instead 

( ) ( )

( ) ( )
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2
1

2
2

82
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S kb kb
π

≅ =
Γ

≅

 (10.56)

so that the scattering amplitude becomes 

( );i i

ik bL
A ββ β

π
− ≅e e  (10.57)

although we cannot expect the Kirchhoff approximation to be valid at 
these low frequencies. 

Figures 10.33, 10.34 plot the magnitude and phase of the nor-
malized pulse echo scattering amplitude versus wave number from the 
Kirchhoff solution, Eq. (10.53), and compares these results to the exact 
separation of variables solution for the two-dimensional pulse-echo P-
wave scattering amplitude [10.6]. It can be seen that the Kirchhoff 
approximation agrees well with the separation of variables solution, 
particularly at the higher frequencies. In Fig. 10.33 both solutions 
approximately follow the high frequency square root behavior in frequency 
given by Eq. (10.55). The exact separation of variables solution has more 
oscillations than the Kirchhoff approximation since, like the spherical void 
case, the exact solution oscillations here come from the interference of  the  
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Fig. 10.33. The three-dimensional normalized pulse-echo P-wave scattering 
amplitude versus normalized wave number for a side drilled hole in the Kirchhoff 
approximation (solid line) and from the exact separation of variables solution 
(dashed line). 

 
Fig. 10.34. The phase of the three-dimensional normalized pulse-echo P-wave 
scattering amplitude versus normalized wave number for a side drilled hole in the 
Kirchhoff approximation (solid line) and from the exact separation of variables 
solution (dashed line). 
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leading edge response of the side-drilled hole with a creeping wave that is 
not contained in the Kirchhoff approximation.  

Since our Kirchhoff solution was obtained by considering the res-
ponse of a three-dimensional cylinder of length L while the separation of 
variables solution is for the two-dimensional scattering from an infinitely 
long cylinder, some remarks are needed to describe how we made the 
comparison shown in Figs. 10.33 and 10.34. In two-dimensional scattering 
problems the waves in the far-field of the scatterer are not spherical waves 
but cylindrical waves and the two dimensional far-field scattering 
displacement ( )1 2,scatt scatt scattu u=u is given by [Fundamentals] 

( ) ( ) ( ) ( ) ( )0 0

; ;
, exp exp ,

p s
i s i sscatt

p s s s
s s

U ik R U ik R
R R

β β

ω = +
A e e A e e

u y
% %

 (10.58)

where the scattering amplitudes, ( );i s
β αA e e% , now are two-dimensional 

vectors and all the distances also are measured in a two dimensional space 
( )1 2,y y . In this case, if we compute the same component of the scattering 
amplitude as done for the three-dimensional case, we obtain 

( ) ( ) ( )2 ; ; ,D i s i sA β α β α α= ⋅ −e e A e e d%  (10.59)

where we use the “2D” label to emphasize that the calculation is for the 
two-dimensional scattering amplitude. It can be shown that this component 
is given by [Fundamentals] 

( )2 2

1;
8

exp ,

D i s s
C

s

iA d n ik C e n u
k c
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β α α α
σ γσ γ α σδγν δ γ ν

α α

α
α λ λ

τ
π ρ

⎡ ⎤= +⎣ ⎦

⎡ ⎤⋅ −⎣ ⎦

∫e e % %
 (10.60)

      (no sum on s, α ) 
 

where nγ  are the components of the outward normal to the flaw and the 
integration is a counterclockwise line integral around the edge of the two-
dimensional scatterer. All the repeated Greek subscripts in Eq. (10.60) are 
summed over the values (1,2) only (no sum on s, α). Recall Eq. (10.7) for 

 
 
 

the  same  three-dimensional  scattering amplitude  component is given  by 
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Fig. 10.35. The three-dimensional normalized pulse-echo SV-wave scattering 
amplitude versus normalized wave number for a side drilled hole in the Kirchhoff 
approximation (solid line) and from the exact separation of variables solution 
(dashed line). 

 
Fig. 10.36. The phase of the three-dimensional normalized pulse-echo SV-wave 
scattering amplitude versus normalized wave number for a side drilled hole in the 
Kirchhoff approximation (solid line) and from the exact separation of variables 
solution (dashed line). 



10.6 The Kirchhoff Approximation for Side-drilled Holes      275 
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      (no sum on s, α ) 
 

From Eqs. (10.60) and (10.61) we see that the two- and three-dimensional 
forms are very similar. In fact, if in the three-dimensional case the geometry 
and fields were all two-dimensional, i.e. if we set 3 3 3 3 0sn d e uα α= = = =%  
and assume ( )1 2, , ,y yαβ αβτ τ ω=% % ( )1 2, ,u u y yβ β ω=% %  we would obtain 

( )
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 (10.62)

      (no sum on s, α ) 
 

Note that all these assumptions are fulfilled exactly by our three-dimensional 
solution for the side-drilled hole in the Kirchhoff approximation. These are 
also reasonable assumptions for more general scattering calculations if we 
assume the incident wave is a quasi-plane wave propagating in a plane 
which is perpendicular to the axis of the side-drilled hole. Comparing Eqs. 
(10.60) and (10.62) we find 

( ) ( )1/ 2
3

2

;2i; .D i s
D i s

A
A

k L

β α
β α

α

π⎛ ⎞
= ⎜ ⎟

⎝ ⎠

e e
e e  (10.63)

Equation (10.63) was used to transform the two-dimensional separation of 
variables scattering amplitude, 2DA , into an equivalent three-dimensional 
scattering amplitude, 3DA
phase of this exact three-dimensional amplitude was plotted and compared 
with the Kirchhoff solution. Thus, the quantities being plotted for both 
curves in those figures are based on 3 /DA L . Figures 10.35 and 10.36 show 
the corresponding results for the pulse-echo scattering amplitude of the 
side-drilled hole calculated for shear (SV) waves. In this case the exact 
solution has deep oscillations since stronger SV- creep waves are 
generated than in the P-wave case. The  Kirchhoff solution is unchanged in  
 

. In Figs. 10.33 and 10.34 the magnitude and 



276      Flaw Scattering 

Fig. 10.37. A comparison of the peak-to-peak pulse-echo responses of a side drilled 
hole of radius b as calculated by the Kirchhoff approximation and the method of 
separation of variables where the non-dimensional wave number and bandwidth 
are varied. (a) Pulse-echo P-wave responses, (b) pulse-echo SV-wave responses. 
White region: peak-to-peak differences < 1 dB, Gray region: differences > 1 dB 
and <1.5 dB, Black region: differences > 1.5 dB. 
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form since Eq. (10.53) is applicable to both P- and SV-waves, but the nor-
malized wave number appearing in the SV-wave case is sk b .  

 The accuracy of the Kirchhoff approximation for the side drilled 
hole can also be studied as a function of the wave number and bandwidth 
as done with the spherical void. Like the spherical void, there is an exact 
separation of variables solution available for a cylindrical void that can be 
used to test the accuracy of the Kirchhoff approximation (see section 10.8). 
Figures 10.37 (a), (b) show the regions of validity of the Kirchhoff approxi-
mation for the side drilled hole that were obtained in the same fashion as 
Figs. 10.23 and 10.24 for the spheroid void and crack, respectively. Figure 
10.37 (a) shows that for the pulse-echo P-wave case, the Kirchhoff approxi-
mation for the peak-to-peak response of the side drilled hole remains 
accurate (within 1 dB of the exact solution) for wave numbers even smaller 
than one and that there are virtually no bandwidth effects. In contrast the 
pulse-echo SV-wave response begins to show some small bandwidth effects 
at sk b = 8 and the Kirchhoff approximation becomes inaccurate at all 
bandwidths for 4sk b < , approximately. 

10.7 The Born Approximation 

Another approximation that is useful for simulating flaw scattering responses 
is the Born approximation [Fundamentals], [10.7-10.11]. This approximation 
is formally a low frequency, weak scattering approximation but we will 
show that with some modifications it may be applicable under a wider set 
of conditions. The Born approximation uses an exact volume integral repre-
sentation of the far-field scattering amplitude given by [Fundamentals] 
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2;

4

exp
f

q m
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 (10.64)

      (no sum on s, α ) 
 

where fV  is the volume of the flaw .  In  Eq.  (10.64) ( ) ,fρ ρ ρ∆ = −x  
( )f

kqmj kqmj kqmjC C C∆ = −x  , where ( ) ( ), f
f kqmjCρ x x

 
elastic constants of the  flaw  (both of which can vary  with position in  the  

 are the density and 
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Fig. 10.38. The Born approximation assumes that for a weakly scattering inclusion, 
the fields in the flaw are to first order the fields of the incident wave traveling in 
the host material as if the flaw was not present, as shown. 

flaw) while ρ  and kqmjC  are the density and elastic constants of the host 
material surrounding the flaw (both of which are assumed to be constants, 
i.e. the host material is taken to be homogeneous). The Born approxi-
mation assumes that the flaw is sufficiently similar to the surrounding host 

mately by those of the known incident wave. Physically, this means that to 
first order we are assuming that the incident wave passes through the flaw 
undisturbed, as shown in Fig. 10.38.  For a pulse-echo setup and a homo-
geneous, isotropic flaw in a homogeneous, isotropic medium, for example, 
this results in a scattering amplitude expression given by [Fundamentals] 

( ) ( ) ( )
2

2; exp 2
2

f

i i i
V

c
A ik dV

c c
ββ β β

β
β β

ω ρ
π ρ

⎡ ⎤∆− ∆
− = + ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
∫e e x e x  (10.65)

that can, like the Kirchhoff approximation, be analytically evaluated for 
some simple flaw shapes. A similar expression can also be obtained for 
more general pitch-catch setups [Fundamentals]. An important feature of 
Eq. (10.65) is that the material properties of the flaw (contained in the 
coefficient of the integral) are completely separated from the flaw geometry 
information (contained in the integral itself). This separation has allowed 
the Born approximation to be successfully used in a number of flaw sizing 
applications [Fundamentals]. For a spherical inclusion Eq. (10.65) gives 
[Fundamentals] 
 
 

material that the fields appearing in Eq. (10.64) can be replaced approxi-
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Fig. 10.39. The impulse response for the pulse echo scattering of a spherical inclusion 
of radius b in the Born approximation. The time t = 0 is when the incident wave 
front reaches the center of the flaw. 

( ) ( ) ( )sin 2 2 cos 2
; ,

2i i

k b k b k bc
A b

c k b
β β βββ β

β β

ρ
ρ

⎡ ⎤−⎡ ⎤∆∆
− = − + ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
e e  (10.66)

which can also be written in the alternate form 

( ) ( )12 3
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; 4 ,
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β
β

− = −e e  (10.67)

where 1j  is a spherical Bessel function of order one and  

1 .
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cβ

ρ
ρ

⎛ ⎞∆ ∆
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 (10.68)

If one inverts either Eq. (10.66) or (10.67) into the time domain, the 
impulse response of the spherical inclusion is the wave form shown in 
Fig. 10.39 [Fundamentals]. Like the Kirchhoff approximation, the Born 
approximation predicts a leading edge delta function response. This delta 
function is followed by a constant response as the wave passes through the 
entire flaw, and then one sees a trailing edge delta function response 
(which is equal to the leading edge delta function response) at the time 
when the wave has just finished passing through the flaw. Like the 
Kirchhoff approximation, the Born approximation is a single interaction 
type of approximation so that it neglects any other wave-flaw interactions 
such as creeping waves, multiple internal reflections, etc. Like the 
Kirchhoff approximation  the  Born approximation  can also be  applied  to  
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Fig. 10.40. The time domain pulse-echo P-wave response of a 1 mm radius 
spherical inclusion in steel where the density and compressional wave speed are 
both ten percent higher than the host steel. Solid line: Born approximation, dashed 
line: separation of variables solution. 

 

 
Fig. 10.41. The time domain pulse-echo P-wave response of a 1 mm radius spherical 
inclusion in steel where the density and compressional wave speed are both fifty 
percent higher than the host steel. Solid line: Born approximation, dashed line: 
separation of variables solution. 
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complex shaped flaws by performing the necessary integrations numerically.  
 Since the method of separation of variables can be used to obtain 

the “exact” solution for spherical inclusions, we can use that method to 
examine the accuracy of the wave form predictions of the Born approxi-
mation, just as we did with the Kirchhoff approximation for the spherical 
void (see Fig. 10.10). In the void case we used the separation of variables 
method to calculate the response to a relatively high frequency and then 
subtracted out (in the frequency domain) the known leading edge delta 
function response before inverting the result into the time domain with an 
FFT. Since the high frequency content of the other wave contributions 
(remainder of the lit surface response, creeping wave, etc.) is very small in 
pulse-echo for P-waves incident on a spherical void, we get in effect an 
infinite bandwidth time-domain response when we simply add the delta 
function back into the wave form symbolically, as done in Fig. 10.10. For 
weak-scattering inclusions the same process is not possible since the front 
and back surfaces are both delta functions. In the Born approximation 
these delta functions are always of equal amplitude but in comparing the 
Born approximation with the method of separation of variables it is found 
that the back surface delta function is only equal in amplitude to the front 
surface delta function in the very weak scattering limit and for all other 
flaws the back surface changes amplitude in an unknown fashion. Thus we 
cannot remove the delta functions from the Born response analytically, but 
we can still calculate the Born approximation and separation of variables 
responses over a range of frequencies and smoothly taper the high 
frequency response to zero with a cosine-squared windowing filter to 
reduce time domain “ringing”. This is the method used here to compare the 
Born and separation of variables solutions in the following discussions. In 
all cases the cosine-squared filter began with values of one at 10 MHz and 
ended with a zero value at 20 MHz.  

Figure 10.40 shows the pulse-echo P-wave response calculated in 
this fashion for a 1 mm radius spherical inclusion in steel where both the 
density and compressional wave speed of the inclusion was taken to be ten 
percent higher than the host steel. It can be seen for even these relatively 
small material changes the Born approximation does not accurately 
represent both the amplitude and time of arrival of the back surface 
response and there are other later arriving waves that are not predicted by 
the Born approximation. If one examines the same size inclusion in steel 
but takes the density and compressional wave speed to be 50% higher than 
the host then as seen in Fig. 10.41 the Born approximation is even more in 
error, with the back surface response  located at a time well removed  from  
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Fig. 10.42. The time domain pulse-echo P-wave response of a 1 mm radius spherical 
inclusion in steel where the density and compressional wave speed are both fifty 
percent higher than the host steel. Solid line: Doubly Distorted Born approximation, 
dashed line: separation of variables solution. 

the actual back surface signal (located at the arrow in Fig. 10.41) and even 
the front surface leading edge response is significantly in error (Note: the 
specific changes in density and wave speed taken for this case and others 
that will be considered later are not intended to represent any particular 
real inclusion but are simply being used here to study the effects of large 
or small differences between the host and flaw materials). Having the 
leading edge response amplitude in error is particularly troublesome 
because it means that the Born approximation could not be reliably used to 
predict the detectability of inclusions except in the very weak scattering 
limit, which is not likely to be found in many real tests. A modified ad hoc 
approximation, called the doubly distorted Born approximation (DDBA) 
[10.12] was recently developed to try to remove some of these deficiencies 
of the ordinary Born approximation. In the DDBA, it was recognized that 
the wave field traveling in the flaw does not travel at the wave speed of the 
host material as assumed in the ordinary Born approximation. Instead, 
disturbances in the flaw should be traveling at the wave speed of the flaw 
material. Thus, the wave speeds appearing in both the integral kernel of the 
Born approximation expression and in the coefficient of that integral were 
changed in the DDBA from that of the host material to that of the flaw. For 
the pulse-echo response of a spherical inclusion, this change causes 
Eq. (10.67) to become instead 
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where /f fk cβ βω= is the wave number based on the flaw wave speed, 
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Figure 10.42 shows the result of using the DDBA on the same case shown 
in Fig. 10.40 (the pulse-echo P-wave response of a 1 mm radius inclusion 
in steel where the density and compressional wave speed are 50% higher 
than the host). Comparing the DDBA results of Fig. 10.42 with the Born 
approximation results of Fig. 10.41, we see that the DDBA amplitude of 
the leading edge response is closer to the separation of variables result than 
that of the Born approximation and also the time separation of the front 
and back surface responses in the DDBA now agrees with the separation of 
variables solution. However, the time of arrival of the front surface leading 
edge response is now incorrect, as seen in Fig. 10.41. The improvement in 
the leading edge response obtained with the DDBA can be understood by 
examining the behavior of the functions F and F% . In [Fundamentals] it 
was noted that in pulse-echo the F function is just the weak scattering limit 
of the plane wave reflection coefficient, ;

12Rβ β  between the host and flaw 
materials, i.e. 
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 (10.71)

The functions F and F%  together with ;
12Rβ β are plotted versus 

/ /c cβρ ρ λ∆ = ∆ =  in Fig. 10.43. From that figure, we can see that the F%  

function does a much better job of following the behavior of ;
12Rβ β  for even 

large changes of density and wave speed. Since at high frequencies our 
previous discussions have shown that the pulse-echo leading edge response  
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Fig. 10.43. A comparison of the F  and F%  functions and the plane wave reflection 
coefficient, ;

12Rβ β . 

is controlled by ;
12Rβ β  (see Eq. (10.19)), the closer agreement of F%  to this 

reflection coefficient is the reason for the improvements seen in Fig. 10.42. 
However, this fact also suggests that if one replaces the F%  function in the 
DDBA by ;

12Rβ β  and includes a phase correction term to the DDBA to fix 
up its incorrect arrival time for the leading edge response, one should have 
a new model that agrees better with the separation of variables result. This 
new model we will call the modified Born approximation (MBA) [10.13]. 
In the MBA model Eq. (10.69) becomes 
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 (10.72)

Figure 10.44 shows the result of using the MBA model on the same case 
shown in Figs. 10.41 and 10.42 (the pulse-echo P-wave response of a 
1 mm radius inclusion in steel where the flaw density and compressional 
wave speed are 50% higher than the host). It can be seen that the leading 
edge amplitude and time of arrival are now both correct as is the time of 
arrival of the back surface response. The MBA model will still model the 
amplitude of the back surface response as equal to the front surface 
amplitude  and  will  not  contain  any of  the  other  responses  seen in  the  
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Fig. 10.44. The time domain pulse-echo P-wave response of a 1 mm radius spherical 
inclusion in steel where the density and compressional wave speed are both fifty 
percent higher than the host steel. Solid line: MBA model, dashed line: separation 
of variables solution. 

 

Fig. 10.45. The time domain pulse-echo P-wave response of a 1 mm radius spherical 
inclusion in steel where the density and compressional wave speed are both one 
hundred percent higher than the host steel. Solid line: MBA model, dashed line: 
separation of variables solution. 
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separation of variables solution, but in general Eq. (10.72) gives much 
better results than either the original Born or the DDBA models. Like the 
DDBA the MBA model is an ad hoc modification of the Born approxi-
mation but it appears to be a useful modification for dealing with inclusions 
that may be far from being weak scatterers. This can be seen in Figure 
10.45 where the pulse-echo P-wave response for a 1 mm radius inclusion 
in steel is shown for a case with the flaw density and wave speed both 
100% higher than that of the host material. Even in this extreme case the 
MBA model continues to capture the leading edge response correctly. For 
the pulse-echo response of a more general shaped inclusion, the MBA gives, 
from Eq. (10.65) 
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where er is the distance in the incident wave direction from a fixed point 
(usually the “center” of the flaw) to the point on the flaw surface where the 
incident wave front first touches the flaw.  

One could of course use Eq. (10.19) to model just the leading edge 
response of an inclusion, even for more general pitch-catch setups. The 

echo inspections  it also captures the main features of the entire flaw response 
correctly in the weak scattering limit. 

10.8 Separation of Variables Solutions 

For spherical or cylindrical shaped scatterers in an elastic solid, one can 
use the method of separation of variables to express the exact scattering 
solution as an infinite sum of spherical Hankel functions and associated 
Legendre functions for the case of the sphere, and Hankel functions and 
complex exponential functions for the cylinder [10.14 – 10.25]. Even 
though both geometries are very simple shapes, they are useful for consi-
dering important scatterers such as pores or a side-drilled hole and they 
can serve as reference solutions for testing the accuracy of approximate 
methods. Although the separation of variables solutions are exact, they are 
expressed in terms of infinite sums that must be calculated numerically and 
more terms are needed as the scatterer becomes larger or the frequency 
becomes higher. Normally this is not a problem since with modern PCs  

advantage of using Eq. (10.73) is that although it is only valid for pulse-
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it is possible to calculate scattering results for non-dimensional frequencies 
as high as, say, 100kb ≅ . 

In this section we will give the separation of variables solution for 
four cases: the pulse-echo response of a spherical void for both P-waves 
and S-waves, and the pulse echo response of a cylindrical void for P-waves 
and S-waves. These solutions have also been coded in MATLAB functions 
which are given in Appendix G.  

First, consider the case of the pulse-echo P-wave response of a 
spherical void of radius b. Using the method of separation of variables, we 
find that [10.14], [Fundamentals] 
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For the SV-wave case, the separation of variables solution is of the form 
[10.18] 
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and 
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The pulse-echo P-wave time-domain response for a spherical void was 
shown previously in Fig. 10.10. There we could simply subtract off the 
leading edge response from the separation of variables solution in the fre-
quency domain and then apply the inverse Fourier transform to the remaining 
portion of the response, which contains only low frequency signals. 
However, for the pulse-echo SV-wave response, the creeping waves are 
more significant and extend to very high frequencies. Figure 10.46 shows 
the magnitude of the pulse-echo SV-wave scattering amplitude of a 0.5 
mm radius spherical pore in steel. The deep oscillations in the SV-wave 
response at high frequencies in comparison with the highly damped 

simple subtraction of the leading edge response will not lead to a response 
confined only to low frequencies. However, we can follow the procedure 
used in the Born approximation and apply a cosine-squared windowing 
filter to the frequency domain scattering amplitude before inverting the 
signal back into the time domain. Figure 10.47 shows the resulting time-
domain SV-wave signal for the 0.5 mm radius pore in steel. For com-
parison purposes Fig. 10.48 shows the time-domain pulse-echo P-wave 
response for the 0.5 mm radius spherical pore in steel as calculated with 
the same filter function used in the Born approximation studies. It can be 
seen while the leading edge responses are almost identical in the two cases 
that the creeping wave in the P-wave case is indeed much smaller than in 
the SV-wave case. 

For the case of a cylindrical void of radius b with the incident 
wave direction in a plane perpendicular to the axis of the cylinder, the 2-D 
separation of variables solution  can be used to  generate a normalized  3-D  

oscillations appearing in Fig. 10.8 for the P-wave response shows that a 
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Fig. 10.46. The magnitude of the pulse-echo SV-wave response, ( );i iA −e e , 
versus frequency for  a 0.5 mm radius spherical void in steel ( 5900pc =  m/s, 

3200sc =  m/sec) as calculated by the method of separation of variables. 

 
Fig. 10.47. The time domain response corresponding to  Fig. 10.46 by applying a 
low-pass cosine-squared windowing filter between 10 and 20 MHz to the 
separation of variables solution and then inverting the result into the time domain 
with the inverse Fourier transform. 
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scattering amplitude for a cylinder of length L, as discussed previously. 
For an incident P-wave 
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with 
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for ( )1,2i = . 
For S-waves, the polarization vector of the incident wave is 

assumed to lie in the plane perpendicular to the axis of the cylinder, so if 
we let that axis be horizontal, we are considering vertically polarized  
S-waves, i.e. SV-waves. Note that the 2-D scattering problem for horizon-
tally polarized shear (SH) waves is just equivalent to a purely scalar 
scattering problem with no mode conversion while the SV-case does involve 
a coupling between P-waves and SV-waves. Here, we will only consider 
the SV-wave case as that is the one most commonly encountered in NDE 
setups. Again, transforming the 2-D separation of variables solution to a 
normalized 3-D scattering amplitude we have 
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Fig. 10.48. The time-domain pulse-echo P-wave response of a 0.5 mm radius 
spherical void in steel ( 5900pc =  m/s, 3200sc =  m/sec) obtained by applying a 
low-pass cosine-squared windowing filter between 10 and 20 MHz to the 
separation of variables solution and then inverting the result into the time domain 
with the inverse Fourier transform. 

 
Fig. 10.49. The time-domain pulse-echo P-wave response of a 0.5 mm radius 
cylindrical void in steel ( 5900pc =  m/s, 3200sc =  m/sec) obtained by applying a 
low-pass cosine-squared windowing filter between 10 and 20 MHz to the 
separation of variables solution and then inverting the result into the time domain 
with the inverse Fourier transform. 
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Fig. 10.50. The time-domain pulse-echo SV-wave response of a 0.5 mm radius 
cylindrical void in steel ( 5900pc =  m/s, 3200sc =  m/sec) obtained by applying a 
low-pass cosine-squared windowing filter between 10 and 20 MHz to the separation 
of variables solution and then inverting the result into the time domain with the 
inverse Fourier transform. 
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These solutions were used in Figs. 10.33-36 to calculate the “exact” 
solutions that were compared with the Kirchhoff approximation in the 
frequency domain. We can calculate these pulse-echo separation of 
variables solutions and then use a cosine-squared window again, as done 
for the spherical void, that allows us to invert these frequency domain 
values back into the time domain. The results for the P-wave response of a 
0.5 mm radius cylindrical void in steel are shown in Fig. 10.49, and the 
corresponding SV-wave response is shown in Fig. 10.50. It can be seen 
that the creeping wave in the P-wave case is very small while it is much 
larger in the SV-wave case. In both cases, the early time response of the 
cylinder (Note: this early time response is not the leading edge response 
calculated earlier for 3-D scatterers), which is predicted well by the 
Kirchhoff approximation, is the dominant part of the overall pulse-echo 
response, which demonstrates that the Kirchhoff approximation works well  
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except for very small flaws where the creeping wave and early time responses 
merge. 

10.9 Other Scattering Models and Methods 

In addition to the Born and Kirchhoff approximations there are other 
approximate methods that have been used to model flaw scattering 
problems, including elastodynamic ray theory (used to model the 
scattering of cracks) [10.26], [10.27] and approximate low frequency 
expansions [10.28 -10.30]. The high frequency ray methods lead to rather 
complex expressions and in certain cases singularities appear that 
invalidate the approximation. Low frequency expansions can produce 
some explicit analytical results but these have been of limited use in NDE 
applications because the responses of flaws of interest often are well 
beyond the range where such expansions are valid. This is unfortunate 
since it has been shown that there is much useful information in the low 
frequency response of flaws [10.30]. 

 Besides the method of separation of variables there are five other 
numerical methods that have been commonly used for solving flaw 
scattering problems: the T-matrix method or the closely related method of 
optimal truncation (MOOT), the method of finite differences, the finite 
element method, the boundary element method, and the elastodynamic 
finite integration technique (EFIT).  

 The T-matrix method and the method of optimal truncation 
(MOOT) express the scattering solution for shapes other than spheres and 
cylinders in terms of the same special functions used in the method of 
separation of variables [10.31-10.35]. These two methods differ only in the 
way they approximately satisfy the boundary conditions. Both spheroidal 
and circular crack-like geometries have been considered with these 
methods. Like the separation of variables methods, these solutions are 
expressed in terms of infinite series and it is necessary to keep a 
sufficiently large number of terms in order to guarantee convergence of the 
solutions.  

 The method of finite differences has also been applied to flaw 
scattering problems [10.36], [10.37]. Unlike the separation of variables or 
T-matrix methods, this approach approximates the governing differential 
equations of motion directly in the time domain for the elastic material 
surrounding the flaw and replaces those equations with corresponding 
difference equations which are then solved numerically for field values 
defined on a mesh (or “grid”) of discrete points as a function of time. This  
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method can in principle handle rather general problems but in practice 
there are a number of issues that have limited the use of this method. First, 
it is convenient to use regular shaped meshes (such as rectangular meshes) 
with this method, but such meshes do not readily allow one to satisfy the 
boundary conditions at the flaw surface if that surface is rather complex. 
Second, since all of the material exterior to the flaw must be meshed, to 
keep the computational burden manageable the mesh must eventually be 
artificially truncated, leading to “fictitious” boundaries. Extraneous waves 
are generated at such fictitious boundaries that must be suppressed. This is 
often done by the application of special absorbing boundary conditions at 
the fictitious boundaries that minimize the extra waves generated or by 
keeping the fictitious surfaces sufficiently far from the flaw so that the 
extraneous waves do not contaminate the solution for the time interval 
considered. Finally, another problem inherent to the finite difference 
method is the large amount of computations needed, particularly for 3-D 
scattering problems. Thus even on modern computers, many of the finite 
difference solutions one sees are for 2-D problems. One nice feature of this 
method, however, is that it yields the solutions at all points in the solid 
directly, which allows one to view the complex wave/flaw interactions 
present in graphical form, including movies of those interactions. The 
mass-spring lattice model of Yim is a recent model of the finite difference 
type that has been used in this manner [10.38].  

 The finite element method, like the finite difference method, 
solves for the scattered fields on a mesh of discrete points [10.39], [10.40].  
In the finite element method, however, the mesh is generated by an 
assemblage of small elements which can have different shapes so that it is 
not difficult to adapt the mesh to even complicated flaw shapes. Unlike the 
finite difference method, however, the finite element method does not 
directly approximate the equations of motion but instead it minimizes an 
energy functional for the assemblage of elements where the fields and 
material properties in each element are approximated by relatively simple 
functions such as polynomials. This allows the finite element method to 
model very complex materials, including both inhomogeneous and 
anisotropic materials. Ultimately, the finite element method generates a 
large, banded system of simultaneous equations that must be solved 
numerically. Like the finite difference method, the finite element method 
must deal with fictitious boundaries and suppress the extra waves 
generated by those boundaries. Perhaps the greatest challenge faced with 
the finite element method is the “curse of small wavelength”, i.e. in order 
to maintain accurate solutions the finite element method must keep the 
element size very small (on the order of 5-10 elements per wavelength). 
Since most NDE applications use very high frequency waves (and hence 
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the corresponding wavelengths are very small) this limitation makes it very 
computationally intensive to simulate general 3-D problems, so that (like 
with finite differences) one often sees finite element solutions applied to 
simpler 2-D or axisymmetric situations.  

 The boundary element method is an attractive method for solving 
flaw scattering problems [10.41-10.45] since it uses a fundamental solution 
for waves in the solid to generate integral equations for the displacements 
and tractions on the flaw surface, and these are precisely the fields needed 
to calculate the scattered waves and the far-field scattering amplitude of 
the flaw. These integral equations are solved by breaking the flaw surface 
into small elements and assuming some simple form for the fields in each 
element, which leads to a large set of simultaneous equations. Unlike the 
finite element system, however, the boundary element system of equations 
is not banded. Because the boundary element method deals only with the 
fields on the surface of the flaw, there are no fictitious surfaces in the solid 
that need to be considered with this method. In fact, the boundary element 
method can easily handle flaw scattering problems in infinite regions. 
However, when dealing with volumetric flaws the boundary element 
solution can be contaminated by fictitious resonances that render the 
solution inaccurate at certain frequencies so that special procedures need to 
be taken to suppress this unwanted behavior. Like the finite element 
method the boundary element method is affected by the curse of small 
wavelength. Thus, it is generally very computationally expensive in terms 
of both computer storage and calculation time to consider 3-D scattering 
problems with the boundary element method for, say, 20kb > . Perhaps the 
most important limitation of this method is the need for a fundamental 
solution to generate the requisite integral equations. Although a funda-
mental solution for a homogeneous, isotropic solid is available in exact 
analytical form [Fundamentals], for homogeneous anisotropic materials 
the fundamental solution is only known in an integral form that must be 
calculated numerically [10.46] and such fundamental solutions are not 
available for general inhomogeneous materials.  

 The elastodynamic finite integration technique (EFIT) is similar in 
some respects to the finite difference method in that it works with an 
approximation of the equations of motion, but, unlike the finite difference 
method, EFIT uses an integral form of those equations of motion [10.47]. 
Like the finite difference and finite element methods, EFIT can serve as 
both a beam model and a flaw scattering model since both of those aspects 
of the wave-flaw interactions are treated simultaneously. Also, like the 
other numerical methods, the generality of the EFIT approach, which in 
principle can handle quite complex inhomogeneous and anisotropic media 
problems, has to be weighed against its overall numerical costs.  
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 There is still considerable opportunity for improving the state of the 
art in flaw scattering modeling for NDE applications. Although approximate 
methods such as the Kirchhoff and Born approximation are very valuable, 
they are limited in the features of the scattering process that they can 
simulate, while more exact numerical methods suffer from computational 
inefficiencies. Surface breaking cracks, porosity, and multiple distributed 
cracks (as found in stress-corrosion cracking problems), are examples 
where simple, efficient, and accurate scattering models are not currently 
available. 
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MATLAB function A_void is given that implements Eq. (10.14). The 
function A_void has as its argument a setup structure that contains all the 
necessary parameters for ultrasonic flaw response simulations. Rewrite 
that function as a new MATLAB function, A_pore, that requires only the 
parameters needed to calculate the scattering amplitude and returns this 
scattering amplitude with the function call: 

 
>> A = A_pore(f, b, c); 

 
where f contains the frequencies (in MHz) at which the scattering 
amplitude is to be evaluated, b is the pore radius (in mm), and c is the 
wave speed of the surrounding material (in m/sec). By similarly modifying 
the function A_crack given in Chapter 12, write a new MATLAB function, 
A_circ, for the pulse-echo response of a circular crack of radius b which 
has a calling sequence: 

 
>> A = A_circ(f, theta, b, c); 

 
where theta is the angle (in degrees) that the incident wave makes with the 
normal to the crack.  

 In MATLAB generate a vector of 200 frequency values ranging 
from 0 to 30 MHz and using these two MATLAB functions plot the 
magnitude of the P-wave pulse-echo scattering amplitude component 
versus frequency for a 1mm radius pore in steel (c = 5900 m/sec) and a 
1 mm radius crack in steel at an incident angle of 10 degrees. Compare 
your plots to Figs. (10.8) and (10.17). 

  
2. The time-domain pulse-echo scattering amplitude responses of a 
spherical pore and a circular crack in the Kirchhoff approximation were 
given by Eqs. (10.15) and (10.39), respectively. These time-domain signals 
were computed by performing the inverse Fourier transforms of 
Eqs. (10.14) and (10.36) exactly so that they are for an infinite bandwidth 
system. Here we want to examine these time-domain responses for finite 
bandwidths. 

(a) In MATLAB generate a vector, f, of 1024 frequencies ranging 
from 0 to 100 MHz using the function s_space (see Appendix G). Compute 
the scattering amplitude components of a spherical pore and circular crack 
for the parameters given in the previous exercise. Multiply these scattering 
amplitudes (element by element) with the output of the MATLAB function 
system_f(f, amp, fc, bw) which generates a Gaussian-shaped window of 
amplitude amp, centered at a frequency, fc, and having a 6 dB bandwidth, 
bw. Take amp = 1.0, fc = 5.0, bw = 4.0 (see Appendix G). Invert these 
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products into the time domain using IFourierT and plot the time domain 
signal versus the time, t. These results show the flaw response as would be 
typically measured in a relatively wideband ultrasonic system. 

 (b) Repeat part (a) but replace the function system_f by the 
function lp_filter (f, fstart, f, end) which is a low-pass filter that is unity for 
frequencies below fstart and is tapered smoothly to zero at the frequency 
fend (see Appendix G). For frequencies above fend the filter is zero. Use 
this function with fstart = 20 MHz, fend = 30 MHz to generate and plot the 
same time-domain signals found in part (a). Comparing these results with 
part (a), what can you conclude? 
 
 




