
11 Ultrasonic Measurement Models 

In the previous Chapters we have shown that in order to predict the 
measured signals in an ultrasonic test one needs to know the system 
function, ( ) , and the acoustic/elastic transfer function, ( )At ω  of the 
system. Then the frequency components of the measured voltage, ( )RV ω , 
are given by 

( ) ( ) ( ).R AV s tω ω ω=  (11.1)

We have seen how to obtain the system function, either by measurement of 
all the electrical and electromechanical components that it contains, or by a 
direct measurement in a calibration setup. In either case, if a flaw measure-
ment is made with the same components and under the same conditions that 
the system function, ( )s ω , is measured, this same system function can be 
used in Eq. (11.1) for the flaw measurement. We have also given explicit 
expressions for the acoustic/elastic transfer function in some simple 
calibration setups. For a flaw measurement we need also to be able to 
describe this transfer function in terms of quantities that can be modeled or 
measured. Once such a transfer function is known, Eq. (11.1) provides a 
complete ultrasonic measurement model of the flaw measurement system. 
This Chapter will describe how to construct models of the acoustic/ elastic 
transfer function and the types of overall measurement models that result. 

11.1 Reciprocity-based Measurement Model 

It will be shown in this section that the acoustic/elastic transfer function 
can be modeled with reciprocity relations for fluid and elastic media. 
These reciprocity relations are very general, relying primarily on the 
assumption of linearity of the media involved. We have already seen 
reciprocity play a role in defining the electrical and electromechanical 
components of a measurement system. For purely electrical components, 
like the cable, reciprocity was given in terms of the electrical input and  
 

s ω
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output voltages and currents of a two port system in the form (see Eq. (3.3)): 
( ) ( ) ( ) ( ) ( ) ( )

1 2
2 2 1 2 2 1(1) (1)

1 1 1 2 2 2 .V I V I V I V I− = −  (11.2)

Similarly the transducer satisfied a reciprocity relation between electrical 
and mechanical quantities (see Eq. (4.4)): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 1 1 2 2 1 .V I V I F v F v− = −  (11.3)

To model the wave propagation and scattering processes contained in the 
acoustic/elastic transfer function, one needs to state similar reciprocity 
relations for the 3-D acoustic and elastic fields involved. For a fluid, for 
example, if one has a volume, V, of a fluid and two different wave fields 
(identified as states (1) and (2)) in that volume that satisfy the same 
homogeneous wave equation (no body force sources), then on the closed 
surface, S, of V we must have satisfied the reciprocity relationship [Funda-
mentals] 

( ) ( ) ( ) ( )( )1 2 2 1 0,
S

p p dS− ⋅ =∫ v v n  (11.4)

where ( ) ( )1 1,p v  are the pressure and velocity fields for state (1), ( ) ( )2 2,p v  
are the pressure and velocity fields for state (2), and n is a unit vector 
normal to S. 

Similarly for a linear, elastic solid, one has a reciprocity relation-
ship between two stress and velocity fields acting in the same volume, V, 
of the same elastic material. If those two fields both satisfy Navier’s equations 
in V for no body force sources, then [Fundamentals] 

( ) ( ) ( ) ( )( )1 2 2 1 0,
S

dS⋅ − ⋅ =∫ t v t v  (11.5)

where ( ) ( )1 1,t v  are the stress (traction) vector and velocity vector for state 
(1) and ( ) ( )2 2,t v  are the stress vector and velocity vector for state (2). The 
Cartesian components of the stress vector are given in terms of the 
Cartesian stresses, ijτ , in the solid by 

( ), 1,2,3i ji jt n iτ= =  (11.6)

where jn  are the components of the normal to the surface, S, surrounding 
the volume. 
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Fig. 11.1. An ultrasonic immersion flaw measurement system. This setup is 
designated as state (1) in our reciprocity relations. 

We will demonstrate the application of these reciprocity relations 
to the flaw measurement system shown in Fig. 11.1. We will call this setup 
state (1). In this state we have the transmitting piston transducer, T, firing 
and generating a normal velocity, ( ) ( )1

Tv ω , on its surface, TS , while the 
receiving transducer, R, is picking up the signals received from the flaw 
and other reflectors over its surface, RS .  The surface of the flaw itself is 
denoted as fS . We have also labeled other surfaces in Fig. 11.1 as follows: 
Surface fsS  is the free surface of the fluid, wS  is the surface of the tank 
wall in contact with the fluid, eS  is the surface of the elastic solid being 
inspected, and iS  is the surface of one or more internal surfaces of the 
solid (other than the flaw). The unit normals to the various surfaces in 
contact with the fluid are also shown in Fig. 11.1. State (2) is shown in 
Fig. 11.2. In this state, we drive the “receiving” transducer R with a normal 
velocity, ( ) ( )2

Rv ω , on its surface, RS , and we have the flaw in the component 
absent. We will also use a state (3), shown in Fig. 11.3. This state is 
identical to state (1), as shown in Fig. 11.3, except that the flaw is also 
absent in this state.  

 First, apply the reciprocity relationship to the common fluid region 
in states (1) and (2). There are no sources inside the fluid so we have: 
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Fig. 11.2. The same measurement configuration as in Fig. 11.1 but where 
transducer  R is assumed to be driven as a transmitter (the pulser driving T is 
quiescent) and the flaw is absent. The surface, fS , is defined in this setup as the 
same surface that was occupied by the flaw in state (1). This configuration is 
designated as state (2) in the reciprocity relations. 

Fig. 11.3.  The same configuration as shown in Fig. 11.1 except the flaw is now 
absent. The surface, fS , is defined in this setup as the same surface that was 
occupied by the flaw in state (1). This configuration is designated as state (3) in 
the reciprocity relations. 
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( ) ( ) ( ) ( )( )1 2 2 1 0.
fs w T R e otherS S S S S S

p p dS
+ + + + +

− ⋅ =∫ v v n  (11.7)

For both states (1) and (2) at the free surface we have ( ) ( )1 2 0p p= =  so 
that the integral over fsS  is zero and can be eliminated from Eq. (11.7). 
Similarly for the tank wall, which is assumed to be rigid, we have 

( ) ( )1 2 0⋅ = ⋅ =v n v n  so the integral over wS  can also be eliminated. The 
surface otherS  includes all other surfaces in contact with the fluid not 
shown explicitly in Fig. 11.1. These other surfaces would be the surfaces 
of the cables, the parts of the transducer surfaces other than the active 
surfaces TS  and RS  and the surfaces of the supports (not shown) of the 
component being inspected. We will assume these other surfaces, like the 
tank wall, are rigid so they also can be eliminated from  Eq. (11.7). [Note: 
strictly speaking, the assumption that the tank wall and other surfaces are 
rigid is not needed to eliminate them from Eq. (11.7). The integrals over 
those surfaces can be eliminated by simply using the fact that they do not 
themselves contain any acoustic sources.] These results then reduce 
Eq. (11.7) to the form 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 2 1 1 2 2 1 .
T R eS S S

p p dS p p dS
+

− ⋅ = − − ⋅∫ ∫v v n v v n  (11.8)

Since we have assumed the transducers are acting as pistons, we can 
remove the velocity terms from the integrals in Eq. (11.8), which leaves 
the remaining integrals of the pressure over the transducer faces as just 
force terms, and we obtain 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 2 1 1 2 2 1 1 2 2 1

e

T T T T R R R R
S

F v F v F v F v p p dS− + − = − − ⋅∫ v v n (11.9)

where ( ) ( ) ( ), 1,2m m
T TF v m =  are the compressive forces and normal 

velocities at the surface, TS , of the transmitting transducer in states (1) and 
(2), and ( ) ( ) ( ), 1,2m m

R RF v m =  are the corresponding forces and normal 
velocities acting on the receiving transducer for those states. The directions 
of the normal velocities all are positive when pointing outwards from the 
transducer face into the fluid. On the surface, eS , of the component being 
inspected the traction and normal velocity must be continuous, i.e. we have 
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Fig. 11.4. The geometry of the solid component being inspected, showing the 
surfaces involved in the reciprocity relations and the directions of the unit normal 
on those surfaces. 

( ) ( )

( ) ( )

m m

fluid solid

m m

fluid solid

p− =

⋅ = ⋅

n t

v n v n
 (11.10)

for m = 1,2 so that Eq. (11.9) can also  be written in terms of the surface 
fields on the solid as 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2 2 1 1 2 2 1

1 2 2 1 .
e

T T T T R R R R

S

F v F v F v F v

dS

− + −

= ⋅ − ⋅∫ t v t v
 (11.11)

Now, consider the volume of solid contained between the external surface, 
eS , which is in contact with the fluid, and the internal surfaces consisting 

of the flaw surface, fS , and other internal surfaces, iS  (Fig. 11.4). Since 
there are no sources of sound inside this volume, we must have 

( ) ( ) ( ) ( )( )1 2 2 1 0.
e f iS S S

dS
+ +

⋅ − ⋅ =∫ t v t v  (11.12)

The surfaces iS  are present in both states (1) and (2). If those surfaces are 
traction free in both states (e.g. if there are holes in the component being 
inspected), or if those surfaces are source-free inclusions of other materials, 
the integral over iS  in Eq. (11.12) will vanish. We then find 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 2 1 1 2 2 1

e fS S

dS dS⋅ − ⋅ = − ⋅ − ⋅∫ ∫t v t v t v t v  (11.13)
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which, when placed into Eq. (11.11), gives 
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 2 2 1 1 2 2 1

1 2 2 1 .
f

T T T T R R R R

S

F v F v F v F v

dS

− + −

= − ⋅ − ⋅∫ t v t v
 (11.14)

In Eq. (11.14), the unit normal to the flaw is directed inwards, as shown in 
Fig. 11.4. If we express the stress vector in terms of the stresses and let the 
components of this inward normal be jn′  Eq. (11.14) becomes 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2 2 1 1 2 2 1

1 2 2 1 .
f

T T T T R R R R

ji i ji i j
S

F v F v F v F v

v v n dSτ τ

− + −

′= − −∫
 (11.15)

It is convenient, however, to switch the direction of the normal so that it 
points outwards from the flaw into the surrounding material. In that case, 
Eq. (11.15) becomes 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2 2 1 1 2 2 1

1 2 2 1 ,
f

T T T T R R R R

ji i ji i j
S

F v F v F v F v

v v n dSτ τ

− + −

= −∫
 (11.16)

where now jn  are the components of the outward normal. 
 We can follow exactly the same steps outlined here for states (1) 

and (2) but use states (3) and (2) instead. On the left hand side of Eq. (11.16) 
the force and velocity terms for state (1) will be replaced by those for state 
(3). The right hand side of equation (11.16) will be zero since the surface 

fS  is itself merely a fictitious surface surrounding a source free region in 
both states (2) and (3). Thus, we find 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )3 2 2 3 3 2 2 3 0.T T T T R R R RF v F v F v F v− + − =  (11.17)

Now, we subtract Eq. (11.17) from Eq. (11.16) to obtain 
( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2 2 2 2

1 2 2 1 ,
f

T T T T R R R R

ji i ji i j
S

F v F v F v F v

v v n dSτ τ

∆ − ∆ + ∆ − ∆

= −∫
 (11.18)
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Fig. 11.5. (a) The force and velocity at the transmitting transducer due to the 
waves from the flaw or due to the waves in state (2), and (b) the corresponding 
equivalent acoustic impedance of the passive system shown in (a). 

where 
( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 3

1 3

1 3

1 3 .

T T T

T T T

R R R

R R R

F F F

v v v

F F F

v v v

∆ = −

∆ = −

∆ = −

∆ = −

 (11.19)

The quantities in state (1) appearing in Eq. (11.19) are due to all the waves 
received at either the transmitter or receiver from 1) either the flaw directly 
(or interactions that involve the flaw) and 2) with other interactions that do 
not involve the flaw at all. We will call the first type of contribution the 
flaw response and the second type of contribution the non-flaw response. 
The quantities in state (3) appearing in Eq. (11.19), however, come from 
exactly the same non-flaw response as in state (1). Thus, all the differences 

to interactions involving the flaw (such as a bounce of the incident wave 
from a surface to the flaw and then to the receiver). We will call these 
differences, therefore, the flaw responses and define them as 

in Eq. (11.19) are only due to waves received from the flaw directly or due 



11.1 Reciprocity-based Measurement Model      309 

.

f
T T
f

T T
f

R R
f

R R

F F
v v
F F
v v

≡ ∆

≡ ∆

≡ ∆

≡ ∆

 (11.20)

In terms of these flaw responses then Eq. (11.18) becomes 
( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2 2 2 2

1 2 2 1

f

f f f f
T T T T R R R R

ji i ji i j
S

F v F v F v F v

v v n dSτ τ

− + −

= −∫
 (11.21)

Since the same incident, driving waves (and the same corresponding voltage 
sources) are present in both states (1) and (3), f

TF is the force at the transmitt-
ing transducer due to waves coming from the flaw in the absence of any 
voltage sources at the transmitter. The same is true for ( )2

TF  since by defini-
tion the only voltage sources active in that state are driving the receiving 
transducer (see Fig. 11.5 (a)). Thus, as shown in Fig. 11.5 (b), for both the 
flaw force response at the transmitter T and for the force at T in state (2) 
one can replace the passive electrical and electromechanical components 
of the sound generation process by the same equivalent acoustic 
impedance, a

inZ , where 

( ) ( )2 2

f a f
T in T

a
T in T

F Z v

F Z v

= −

= −
 (11.22)

[the minus signs are due to the fact that the velocities appearing in 
Eq. (11.22) were both defined as the normal velocities directed outwards 
from the transducer, as shown in Fig. 11.5 (b)]. Placing Eq. (11.22) into 
Eq. (11.21), the terms at the transmitter all cancel, leaving 

( ) ( )( ) ( ) ( ) ( ) ( )( )2 2 1 2 2 1

f

f f
R R R R ji i ji i j

S

F v F v v v n dSτ τ− = −∫  (11.23)

In state (2), we have at the receiving transducer (which is firing as a 
transmitter) ( ) ( )2 2;R a

R r RF Z v= , where ;R a
rZ  is the acoustic radiation impedance 

of the receiving transducer so Eq. (11.22) becomes: 
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But the term in parentheses on the left side of Eq. (11.24) is just the total 
force at the receiver due to the waves from the flaw minus the force 

;f R a f
s r RF Z v≡   due to the motion of the receiving transducer from the flaw 

response. By definition, this is just the blocked force, BF , at the receiver 
due to the waves contained in the flaw response (see Eq. (5.24)), i.e. 

;f R a f
B R r RF F Z v= −  (11.25)

and Eq. (11.24) can be rewritten as 

( )
( ) ( ) ( ) ( )( )1 2 2 1

2

1 .
f

B ji i ji i j
SR

F v v n dS
v

τ τ= −∫  (11.26)

[Note that this blocked force is a force due only to wave interactions with 
the flaw, but we have dropped the superscript “f ” and labeled the force 
simply BF  in order to be compatible with the notation used in previous 
Chapters.] Since the force at the transmitting transducer in our measurement

( ) ( )1 1;T a
t r TF Z v= ( ) ( )1/A B tF F= ,

for the measured flaw signals is given by 

( ) ( ) ( )
( ) ( ) ( ) ( )( )1 2 2 1

1 2;

1 .
f

A ji i ji i jT a
Sr T R

t v v n dS
Z v v

ω τ τ= −∫  (11.27)

When Eq. (11.27) is placed into Eq. (11.1), we have, finally a complete 
measurement model for the voltage received from the flaw, which can be 
written more explicitly as: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2;

1 2 2 1, , , , ,
f

R T a
r T R

ji i ji i j
S

s
V

Z v v

v v n dS

ω
ω

ω ω

τ ω ω τ ω ω

=

⎡ ⎤⋅ −⎣ ⎦∫ x x x x x
 (11.28)

jn  
are the components of the outward normal. 
 

setup is , the acoustic/elastic transfer function, t ω

where x is a general point on the surface of the flaw and recall that the 

( ) ( ) ( ) ( ) ( ) ( )( )2 1 2 2 1; .
f

f R a f
R r R R ji i ji i j

S

F Z v v v v n dSτ τ− = −∫  (11.24)
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 We obtained this result for the pitch-catch immersion setup of 
Fig. 11.1 but it can be equally applied to pulse-echo and contact testing 
setups as well. Since the fields in states (1) and (2) in Eq. (11.28) are 
divided by the driving normal velocities ( ) ( )1 2,T Rv v  in states (1) and (2), we 
only need to model the fields in both states due to driving transducers 
having a unit normal velocity on their faces. Thus, we do not need to 
explicitly know those normal velocities. This fact is important since if we 
had to model the absolute beam fields we would need a way to determine 

In state (2), the flaw is absent so that the stress and velocity fields 
appearing in that state in Eq. (11.28) are due to just the waves incident of 
the flaw surface. Those fields only require that we have an ultrasonic beam 
model in order to predict them. In state (1), however, the flaw is present, 
so that we must have both a beam model to predict the incident fields on 
the flaw in that state and a flaw scattering model that can predict the waves 
generated by the interaction of the incident waves with the flaw. 

 Equation (11.28) in a slightly different form was originally derived 
in 1979 by Bert Auld [11.1]. Because it is a very general result it has been 
frequently used as the basis for many ultrasonic modeling efforts world-
wide. The main difference between Eq. (11.28) and Auld’s original form is 
that Eq. (11.28) is an expression for the measured output voltage in an 
ultrasonic measurement system while Auld’s result gave the measured 
flaw response in terms of a change of the fields present in a cable at the 
receiver. While this difference does not change the basic form of 
Eq. (11.28), it is an important difference when one wants to examine the 
elements in ( )s ω  as done in previous Chapters. 

 
very useful.  In both states (1) and (2), we assume the incident velocity 
field can be expressed as an incident plane wave modified by a spatially 
varying “amplitude” coefficient. Then we can write the incident velocity 
field in state (1) as (omitting the ( )exp i tω− term): 

 

 
 Equation (11.28) is a significant result. It shows that if we can 

measure the system function and model the stress and velocity fields 
present at the flaw in states (1) and (2), we can predict the measured 
voltage response of the flaw in virtually any flaw measurement system.  

the “driving” normal velocities at the transmitting and receiving transducers 
in states (1) and (2), respectively. The normal velocities at the acoustic ports 
of these transducers are not easy quantities to determine experimentally, so 
it is fortunate that we do not need to know them to apply Eq. (11.28). 

We can express Eq. (11.28) in a slightly different form that is also 
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Fig. 11.6. The velocity fields incident on a flaw in states (1) and (2), respectively, 
which for small flaws can be treated locally as quasi-plane waves. 

( ) ( ) ( ) ( ) ( )1 1 1 1(1);
2

ˆ , expinc
j T j n nv v V d ik e xβω ⎡ ⎤= ⎣ ⎦x  (11.29)

and the incident velocity in state (2) as 
( ) ( ) ( ) ( ) ( )2 2 2 2(2)

2
ˆ , expj R j n nv v V d ik e xαω ⎡ ⎤= ⎣ ⎦x  (11.30)

where ( ) ( )ˆ 1,2mV m =  are the velocity field “amplitudes” (note that they are 
complex quantities) of the incident waves in states (1) and (2) normalized 

those states.  The ( )( )1,2m
jd m =

the two states, 2kα   and 2kβ are the wave numbers for the incident waves in 
states (1) and (2) in the solid surrounding the flaw, respectively, and where 
α and β denote the incident wave type (P or S). The ( ) ( )1,2m

ne m =  terms 
are the components of the unit vectors in the direction of propagation for 
the incident waves in the two states. In Eqs. (11.29) and (11.30) the 
coordinates of the point ( )1 2 3, ,x x x=x  are measured from an origin 
located at point 0x , which is a fixed point near the flaw, usually taken at 
the flaw “center” (see Fig. 11.6). Note that in state (1) the total velocity, 

( )1v  is given by ( )1 (1); (1);inc scatt= +v v v , where ( )1 ;incv is given by Eq. (11.29) 
and ( )1 ;scattv  is the velocity field due to the waves scattered from the flaw, 
while in state (2), the total velocity field is only the incident field given by 
Eq. (11.30) since the flaw is absent in that state. 

 Using these quasi-plane wave forms in Eq. (11.28), we can write 
that equation in the form 

in
 

 are polarizations of the incident waves in 
by the driving velocities on the faces of the transmitting transducers 
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( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
;

2

1 2 2
2

4

ˆ ˆ, , , exp
f

R T a
r

n n
S

cV s
ik Z

V V ik e x dS

α

α

α

πρ
ω ω

ω ω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦∫ x x xA �
 (11.31)

with 

( ) ( ) ( ) ( ) ( )( ) ( )1 2 2 2 1
22

2 2

1, / .
4 ji i ijkl k l i jd C d e c v n

c α
α

ω τ
πρ

⎡ ⎤= +⎣ ⎦xA  (11.32)

            (no sum onα ) 
  
where 2 2,cαρ  are the density and wave speed, respectively, for the material 
surrounding the flaw. The normalized velocity and stress terms ( ) ( )1 1,j ijv τ  are 
defined as 

( )
( )

( ) ( )

( )
( )

( ) ( )

1
1

1 1

1
1

1 1

ˆ

.ˆ

ij
ij

T

j
j

T

i
v V

i v
v

v V

ωτ
τ

ω

−
=

−
=

 (11.33)

Physically, these normalized fields are the actual fields in state (1) 
normalized by an incident wave displacement amplitude term 

( ) ( ) ( ) ( ) ( ) ( )1 1 1ˆ, , /TU v V iω ω ω= −x x .  
 Equation (11.31) begins to reveal some of the structure of the 

integral term that was not evident in Eq. (11.28). The 
( ) ( ) ( ) ( )1 2ˆ ˆ, , ,V Vω ωx x  terms are quasi-plane wave incident field amplitudes 

at the flaw for states (1) and (2) due to the transmitting and receiving 
transducers radiating with a unit velocity on their surfaces. These terms 
can be modeled explicitly if one has a beam model such as the multi-
Gaussian beam model of Chapter 9 and combines the beam model with 
terms that take into account the material attenuation present (see 
Appendix D). The remaining A   term is closely related to the scattering 
properties of the flaw. If the displacement amplitude term ( )1U was a 
constant or if it did not vary significantly over the surface of the flaw then 
the normalized velocity and stress fields in Eq. (11.32) would be those due 
to an incident plane wave of unit displacement amplitude on the flaw. But 
recall the component of the plane wave far-field scattering amplitude taken 
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in the ( )2−d  direction, ( ) ( ) ( )( ) ( )( )1 2 2; ;A α βω ≡ ⋅ −A e e d  is just given by (see 
Eqs. (10.6) and (10.7)) 

( ) ( ) ( ) ( )2, exp .s s
S

A ik dSα
αω ω= − ⋅∫ x e x xA  (11.34)

[Note: to compare with the results in Chapter 10, in our current notation, 
( )1

i
β =e e , ( )2

s
α = −e e ]. Thus, A  contains the total fields on the surface of 

the flaw that in principle could be obtained by solving the flaw scattering 
problem and can be used to compute the far-field scattering amplitude 
component, ( )A ω . Of course, in Eq. (11.31) the far-field scattering ampli-
tude component of Eq. (11.34) itself does not appear explicitly because of 
the beam variations contained in that equation but as we will see in the 
following section there are cases where the frequency spectrum of the 
received voltage is proportional directly to ( )A ω . 

11.2 The Thompson-Gray Measurement Model 

If we write the incident fields in states (1) and (2) as quasi-plane waves 
and if in addition we assume that the flaw is small enough so that the 
variations of the velocity field amplitudes ( ) ( )ˆ 1,2mV m = are negligible over 
the surface of the flaw, we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1(1);
0 2

2 2 2 2(2)
0 2

ˆ exp

ˆ exp ,

inc
j T j n n

j R j n n

v v V d ik e x

v v V d ik e x

β

α

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

 (11.35)

where ( ) ( ) ( ) ( ) ( )0 0
ˆ ˆ , 1,2m mV V mω ω≡ =x , i.e. the velocity field amplitudes 

are now constants evaluated at a fixed point, 0x , in the vicinity of the flaw, 
which is usually taken at the “center” of the flaw (Fig. 11.6). We see from 
Eq. (11.35) that under this assumption these incident fields are now indeed 
treated as simply plane waves. Then Eq. (11.31) becomes 

( ) ( ) ( ) ( )

( ) ( )

1 2 2 2
0 0 ;

2

2
2

4ˆ ˆ

, exp
f

R T a
r

n n
S

cV s V V
ik Z

ik e x dS

α

α

α

πρ
ω ω

ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦∫ xA �
 (11.36)
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and the far-field scattering amplitude component  does appear explicitly so 
we find, finally 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 2
0 0 ;

2

4ˆ ˆ .R T a
r

cV s V V A
ik Z

α

α

πρ
ω ω ω ω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (11.37)

A form similar to Eq. (11.37) was first obtained by Thompson and Gray in 
1983 [11.2]. As we have seen, this Thompson-Gray measurement model is 
based on the general reciprocity-based measurement model (Eq. (11.28) 
and only two assumptions: 1) the incident waves can be expressed in a 
quasi-plane wave form, and 2) the flaw is small enough so that the 
amplitude of this quasi-plane wave does not vary significantly over the 
flaw surface [11.3].  With those two assumptions we obtain a modular 
measurement model where the flaw response, ( )A ω , is explicitly separated 
from all the other measurement system terms, including the system 
function, ( )s ω , and the normalized incident fields ( ) ( )1 2

0 0
ˆ ˆ,V V at the flaw 

from the transducers in states (1) and (2), respectively.     
This separation of terms allows us to examine a ultrasonic measure-

ment system in a variety of ways. For example, if the voltage response of 
an unknown flaw is measured and we also measure ( )s ω  and model the 
transducer beam fields ( ) ( )1 2

0 0
ˆ ˆ,V V , we can write Eq. (11.37) in the form 

( ) ( ) ( ) ,RV G Aω ω ω=  (11.38)

where both ( )RV ω  and ( )G ω  are known. In this case we can divide the 
measured voltage by the known G (using a Wiener filter) to obtain a 
measured flaw far-field scattering amplitude of the flaw. An example of 
this approach is given in Chapter 13. The flaw far-field scattering 
amplitude is related to the properties of the flaw only, so that we can use it 
in quantitative flaw characterization and sizing studies. Alternatively, we 
could model the beam fields and the scattering amplitude for an assumed 
flaw and measure the system function for a given measurement setup. In 
this case we could use Eq. (11.38) to predict the amplitude of the received 
signals from the known flaw directly. This information might be used, for 
instance, to optimize the transducer orientation during a scan so that the 
signals received from a given flaw are large. Engineering studies of these 
and other types can be done easily with the Thompson-Gray measurement 

 
model, so that  it has been used for  many  practical  industrial applications  
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Fig. 11.7. A pitch-catch measurement of the scattering from a cylindrical reflector 
of length L where the axis of the cylinder  is normal to planes of incidence for 
states (1) and (2). 

(many examples are available in past volumes of Review of Progress in 
Quantitative Nondestructive Evaluation [11.4]). 

11.3 A Measurement Model for Cylindrical Reflectors 

The Thompson-Gray measurement model describes the ultrasonic response 
of a flaw where the variation of the incident fields can be neglected over 
the entire flaw surface. In some experiments cylindrical reflectors are used 
where the beam variations over the cross-section of the reflector may be 
neglected, but the variations over the length of the reflector are significant. 
An example is where a side-drilled hole is used as a reference reflector in a 
calibration block. Here, we will develop a measurement model suitable for 
these type of setups [11.5]. 

 Consider the pitch-catch case shown in Fig. 11.7. We will assume 
that the reflector has a cylindrical geometry and is of length, L. We will 
also assume that the axis of the cylinder is normal to the planes of 
incidence of the incident waves in states (1) and (2), which are defined to 
be the planes that contain both the incident wave direction and the unit 
normal, n, to the reflector. This is a reasonable assumption since in most 
setups where a 2-D reflector such as a side-drilled hole is used, the 
transducers are usually oriented so that this condition holds. With this 
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assumption it is reasonable to also assume that all the scattering occurs 
only from the cylindrical surface, i.e. the scattering from the ends of the 
reflector is neglected. For a side-drilled hole, for example, which is often 
drilled entirely through a reference calibration block, the length of the hole 
is generally larger than the axial extent of the interrogating transducer 
fields, so that this assumption is well satisfied.  

 Like the Thompson-Gray measurement model, we will also assume 
the incident fields in states (1) and (2) can be represented by the quasi-
plane waves given by Eqs. (11.29) and (11.30). Thus, we can use as our 
starting point Eq. (11.31), which we write as: 

( ) ( )

( ) ( ) ( ) ( ) ( )

2 2
;

2

1 2 2
2

4

ˆ ˆ, , , , exp ,
c

R T a
r

n n
S

cV s
ik Z

V z V z ik e x dS

α

α

α

πρ
ω ω

ω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦∫ y y A
 (11.39)

where the integration is now over only the cylindrical surface, cS , and the 
velocity field amplitudes over this surface are expressed as ( ) ( ) ( )1 1ˆ ˆ , ,V V z ω= y , 

( ) ( ) ( )2 2ˆ ˆ , ,V V z ω= y  where ( )1 2,y y=y is a point in a plane normal to the 
cylinder axis and z is along the axis. If the cylinder is small enough to 
neglect the variations of these velocity fields over its cross-sectional area 

( ) ( ) ( )
( ) ( ) ( )

1 1

2 2
0

0

ˆ ˆ
ˆ ˆ

, ,
,

V V z
V V z

ω
ω

=
= , where 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1
0 0

2 2
0 0

ˆ ˆ, , ,
ˆ ˆ, , ,

V z V z

V z V z

ω ω

ω ω

≡

≡

y

y
 (11.40)

0

(Fig. 11.7). Then we can write Eq. (11.39) as 

( ) ( )

( ) ( ) ( ) ( ) ( )

2 2
;

2

1 2 2
0 0 2

4

ˆ ˆ, , exp ,

R T a
r

n n
C L

cV s
ik Z

V z V z ik e x dcdz

α

α

α

πρ
ω ω

ω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦∫ ∫ A
 (11.41)

where the 2-D surface integration has been decomposed into  a counter-
clockwise line integral over the cross-section, C, and a 1-D integral over 
the length, L. 

 Now, consider the normalized fields appearing in the A  term in 
Eq. (11.41). They are: 

(but not neglecting these variations over its length) we let 

and y  is a fixed point, usually taken as the center of the reflector 
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( )
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

1
1

1
0

1
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1
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ˆ ,
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.ˆ ,
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V z
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−
=

−
=

y
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 (11.42)

We will also assume that these normalized fields are functions of y only, 
i.e. we assume the z-variations of the non-normalized fields are identical to 
those in the incident waves. In this case we then also have ( ),ω= yA A  
only. This assumption is equivalent to breaking the cylindrical surface into 
small elements of length dz and at each z treating the scattering of each 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
0̂, , /TU z v V z iω ω ω ω= − . In Chapter 10, where the scattering 

amplitude for a side-drilled hole was calculated via the Kirchhoff 
approximation, this assumption was satisfied exactly. Here, we will make 
the assumption regardless of how the scattering problem for the cylinder is 
to be solved. With this assumption, then Eq. (11.41) becomes 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 22 2
0 0;

2

2
2

4 ˆ ˆ, ,

, exp ,

R T a
r L

C

cV s V z V z dz
ik Z

ik e y dc

α

α

α λ λ

πρ
ω ω ω ω

ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦

∫

∫ y yA �
 (11.43)

where the summation over the repeated λ  subscript is taken over values 
(1,2) only. 

But the far-field scattering amplitude of the cylindrical reflector is 
given by 

( ) ( ) ( ) ( )2
3 2, expD

C

A L ik e y dcα λ λω ω ⎡ ⎤= ⎣ ⎦∫ y yA  (11.44)

where we have used the “3D” label to emphasize that the reflector is still 
being treated as a three-dimensional scatterer even though under our 
assumptions the fields in Eq. (11.44) are all two-dimensional. With this 
definition, Eq. (11.43) can be reduced to 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 2 2
0 0 ;

2

4ˆ ˆ, , .D
R T a

rL

A cV s V z V z dz
L ik Z

α

α

ω πρ
ω ω ω ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦⎣ ⎦

∫  (11.45)

element as if it were a purely two-dimensional scattering process due 
to a plane wave whose displacement amplitude is given by 
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Equation (11.45) is the measurement model for the cylindrical reflector 
that is the counterpart of Eq. (11.37) for the small three-dimensional flaw. 
In fact, if the incident velocity fields do not vary significantly also in the z-
direction, we see that Eq. (11.45) simply reduces to Eq. (11.37). 

 Since under our assumptions the fields in Eq. (11.44) only depend 
on y and from our other assumptions we also have 3 3 3 3 0n e d vα α α= = = = , 
Eq. (11.44) can be rewritten more explicitly as 

( ) ( ) ( ) ( ) ( )( ) ( )

( )

1 2 2 2 1
3 22

2 2

2
2

/
4

exp ,

D
C

LA d C d e c v
c

n ik e y dc

γσ σ σγνδ ν δ α σ
α

γ α λ λ

ω τ
πρ

⎡ ⎤= +⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦

∫
 (11.46)

         (no sum on α ) 
 

where all the Greek indices are summed over the values ( )1,2 only (no 
sum on α). As shown in Chapter 10 this scattering amplitude component 
can be related to the corresponding far-field scattering amplitude 
component, ( )2DA ω , in a purely two-dimensional scattering problem 
where both the incident fields and the geometry of the reflector are 
independent of the z-coordinate. That relationship was given as (see Eq. 
(10.63)): 

( ) ( )1/ 2
3

2
2

2i .D
D

A
A

k Lα

ωπω
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (11.47)

Thus, we can express our ultrasonic measurement model for the cylinder 
either in terms of the three-dimensional far-field scattering amplitude of 
the reflector or its two-dimensional far-field scattering amplitude counterpart. 
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11.5 Exercises 

1. In Chapter 12, a multi-Gaussian beam model is used in conjunction with 
the Kirchhoff approximation to implement the Thompson-Gray measure-
ment model (Eq. (11.37)) for the pulse-echo P-wave response of a spherical 
void, as shown in Fig. 11.8. However, one can also implement this 
measurement model directly using the results of Chapter 8 and Chapter 10. 
First note that for this pulse-echo setup Eq. (11.37) becomes 

( ) ( ) ( ) ( ) ( )
2 2 21

0 2
2 1 1

4ˆ ,p
R

p p

c
V s V A

ik a c
ρ

ω ω ω ω
ρ

⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

 (11.48)

where a is the radius of the transducer, 1 1, pcρ  are the density and com-
pressional wave speed of the fluid, 2 2, pcρ  are the density and wave speed 
of the solid, and 2 2/p pk cω=  is the wave number for compressional waves 
in the solid. The normalized on-axis velocity, ( ) ( )1

0̂V ω , can be obtained 
from Eq. (8.25) as 

( ) ( ) ( ) ( )
2

11 ;
0 12 1 1 1 1 2 2
ˆ exp exp 1 exp ,

2
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p p p

ik a
V T z ik z ik z

z
ω α
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= − + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (11.49)

where 1 2 2 1/p pz z c z c= +  and ;
12

p pT is the plane wave transmission coefficient 
at normal incidence (see Eq. (D.36)): 

1 1;
12

1 1 2 2

2
.pp p

p p

c
T

c c
ρ

ρ ρ
=

+
 (11.50)

An attenuation factor has been included in Eq. (11.49) to account for the 
water attenuation. The attenuation of the solid (which is glass) has been 
neglected here. In implementing Eq. (11.49),  omit  the  propagation  terms  
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Fig. 11.8. Measurement of the pulse-echo P-wave response of an on-axis spherical 
pore. 

( )1 1 2 2exp p pik z ik z+  as these only generate large phases that represent a 
time delay factor 1 1 2 2/ /p pt z c z c∆ = +  that can always be added in later, if 
necessary. 

 For the scattering amplitude term, ( )A ω , one can use the Kirchhoff 
approximation  for the pulse-echo response of a void of radius b given by 
(Eq. (10.14)): 

( ) ( ) ( ) ( )2
2 2

2

sin
exp exp .

2
p

p p
p

k bbA ik b ik b
k b

ω
⎡ ⎤−
⎢ ⎥= − − −
⎢ ⎥⎣ ⎦

 (11.51)

 Write a MATLAB script that implements the Thompson-Gray 
measurement model of Eq. (11.48) for this on-axis spherical pore. The 
pertinent data for this problem are: 
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( )
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3 2
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=
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= ×

 

For the system function, ( )s ω , use the simulated MATLAB function 
system_f(f, amp, fc, bw) described in Appendix G. Take amp=0.08, fc = 5, 
bw = 4. These parameters simulate a system containing a broad band 
5 MHz transducer. The frequency, f, in this function is measured in MHz.  
 The MATLAB script should calculate the received voltage from 
the void as a function of frequency, perform an inverse FFT to obtain the 
corresponding time-domain signal, and then plot this signal versus time. 
Verify that you results agree with Fig. 12.11 which is the solution of this 
same problem using a multi-Gaussian beam model instead of Eq. (11.49).
  
 




