
12 Ultrasonic Measurement Modeling with 
MATLAB 

In this Chapter we will implement complete ultrasonic measurement 
models in a series of MATLAB functions and scripts for the pulse-echo 
setup of Fig. 12.1. These measurement models will be used to simulate a 
number of measurement setups where a reference reflector such as a 
spherical pore, a flat-bottom hole, or a side drilled hole is present. Refer-
ence reflectors are commonly used in NDE tests to serve as calibration 
standards and they are also used to measure system performance. Here we 
will demonstrate the ability of the measurement models to simulate 
experimentally determined signals from these types of reference reflectors 
[12.1]. Similar demonstrations have been carried out worldwide by a 
number of researchers in a recent series of benchmark studies (see [12.2] 
for an overview of these activities from 2001- 2005). In those studies a 
variety of beam models and flaw scattering models were employed. Here, 
we will use the multi-Gaussian beam model of Chapter 9 and two of the 
flaw scattering models discussed Chapter 10 (the Kirchhoff approximation 
and the method of separation of variables) in conjunction with the various 
measurement models described in Chapter 11.  
 The MATLAB models of this Chapter can be used by the reader as 
the basis for implementing and studying many of the concepts and results 
discussed in this book in a more hands-on fashion, where the parameters 
can be readily changed and the results easily illustrated. Although the models 
are implemented for a simple pulse-echo configuration (Fig. 12.1) they can 
be used for a number of advanced purposes, such as examining ultrasonic 
beam behavior at curved interfaces, for example, and they can serve as the 
starting point for developing more complex simulation models. 

12.1 A Summary of the Measurement Models 

In the previous Chapter we developed measurement models suitable for 
several  different testing  situations. These  included  a general  model  that  
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Fig. 12.1. Parameters for defining the problem of pulse-echo inspection of a flaw 
in a solid through a fluid-solid interface. 

only relied on linearity and reciprocity and assumed the incident beam could 
be written in quasi-plane wave form. For that model the frequency compo-
nents of the measured voltage were given by 
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where, recall, 
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involves the stresses and velocity on the surface of the flaw normalized by 
the incident wave displacement amplitude at the flaw, i.e. 
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The terms ( ) ( )ˆ ,V α ωx  ( )1,2α =  are the incident velocity field amplitudes 
on the flaw surface for states (1) and (2), where in state (1) the transmitting 
transducer is firing with a unit velocity on its face and for state (2) the 
receiving transducer is firing with a unit velocity on its face. Both of these 
amplitude terms, therefore, can be calculated with appropriate ultrasonic 
beam and attenuation models. The remaining fields in the ( ),ωxA term are 
the total fields on the surface of the flaw normalized by the displacement 
of the incident wave. Those fields can also be modeled with an appropriate 
flaw scattering model. This measurement model is quite general and 
should apply to most testing situations. Note that in this form the flaw far-
field scattering amplitude does not appear directly but, as shown in the last 
Chapter, ( ),ωxA  is closely related to the component of the scattering ampli-
tude that appears in other measurement models (see Eq. (11.34)). 

 The second model developed assumed that the flaw was small 
enough so that the incident fields did not vary significantly over the surface 
of the flaw. In that case we found 
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are the now the velocity amplitude terms evaluated at the “center” of the 
flaw and a flaw far-field scattering amplitude term, ( )A ω , is directly a part 
of the measurement model. 

 For a cylindrical scatterer where beam variations are not negligible 
we can again apply the measurement model of Eq. (12.1). For a small 
cylindrical scatterer, however, where beam variations over the scatterer 
cross section are negligible we found 
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are now the incident velocity amplitude terms calculated at the “center” of 
the scatterer and at any axial position along its length. The far-field scattering 
amplitude of the flaw appearing in Eq. (12.5) is the same 3-D scattering 
amplitude in Eq. (12.4), but as mentioned in the last Chapter we also can 
use a 2-D scattering amplitude calculation in Eq. (12.5) if we use the rela-
tionship of Eq. (11.48). 

 Each of the measurement models described above has three 
components: 1) the system function, ( )s ω , describing all the electrical and 
electromechanical elements of the measurement system, 2) the velocity 
fields ( ) ( )1 2ˆ ˆ,V V  that characterize the incident fields on the flaw from the 
transmitting transducer or receiving transducer, respectively, when there is 
a unit driving velocity on those transducer faces, and 3) the scattering 
properties of the flaw itself, described in terms of  ( ),ωxA  or ( )A ω .  In 
this Chapter we will develop a series of MATLAB functions that model 
each of these three components and implement the measurement models 
described above.  

 
transducer is performing a pulse-echo inspection of a flaw in an immersion 
setup. First, assume that the flaw is small enough so that the beam 
variations over its surface can be neglected and the measurement model of 
Eq. (12.4) can be used. The distances along a ray (a path satisfying Snell’s 
law) extending normally from the center of the transducer are 1 2,z z  for the 
fluid and solid, respectively, and the center of the flaw is located at a point 
( )2 2,x y  relative to that central ray as shown in Fig. 12.1, where the 2y -axis 
is normal to the plane of incidence. The acute angle of the central ray in 
the fluid and the normal to the interface (at point P where that ray 
intersects the interface) is the angle 1

pθ . The ( ),i iy z coordinates are in the 
tangent plane of the interface and iy  is normal to the plane of incidence. 
The angle of the iz -axis from one of the principal directions, 1n , of the 
surface is the angle φ . [Important: note that these definitions are different 

The problem we will consider is shown in Fig.  12.1 where  a 
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from some of those used in Chapter 9 and Chapter 11 so that in the MATLAB 
measurement models of this Chapter one should relate the quantities in 
those models back to Fig. 12.1].  

We can express the measurement model of Eq. (12.4) more 
explicitly by examining the various pieces that contribute to the velocity 
terms. Since we are considering a pulse-echo setup here, our measurement 
model can be written as 
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and the incident velocity field, ( )1
0̂V , can be written as 

( ) ( ) ( )1
0 1 1 2 2 0
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where 1 2,z z  are the distances the sound beam from the transducer has 
propagated in the fluid and the solid, respectively, and ( ) ( )1 2,p γα ω α ω are 
the frequency dependent attenuation coefficients for the compressional 
wave in the fluid and the wave of type γ  in the solid, respectively. The 
term 0/iV vγ  is the ideal velocity field (for a material with no losses) at the 
flaw normalized by the normal velocity, 0v , on the face of the transducer. 
This ideal field will be described by a multi-Gaussian beam model of the 
type discussed in Chapter 9. The types of transducer we will consider in 
the setup of Fig. 12.1 with a multi-Gaussian beam model are circular 
planar and spherically focused piston transducers. In the following section 
we will use the general formulation of Chapter 9 to derive a multi-Gaussian 
beam model that is directly applicable to a setup of the type given in  
Fig. 12.1. 

12.2 The Multi-Gaussian Beam Model 

In developing the multi-Gaussian beam model the interface will assumed 
to be either planar or curved, with the plane of incidence of the transducer 
aligned with one of the principal curvatures of the interface (i.e. 0φ = in 
Fig. 12.1). For a single fluid-solid interface on transmission through the 
interface it is not necessary to rotate axes and the angle 0λ =  in 
Eqs. (9.89)-(9.91). Also, we do not need to put the transmission coefficient 
in matrix form, but can use the simpler scalar relation of Eq. (9.79). The 
ideal normalized velocity for a wave of type γ  in the solid as computed by 
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the multi-Gaussian beam model (with 15 coefficients) for this case is then 
given by (see Fig. 12.1) 
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       ( ),p sγ =   
where, ( )2 2,T x y=y  and at the face of the transducer 
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From Eq. (12.9) and  Eq. (12.10) then it follows that 
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in terms of the Wen and Breazeale coefficients ,r rA B . The polarization 
vector, γd , is shown in Fig. 12.1 for both P-waves and SV-waves. The plane 
wave transmission coefficient, ;

12
pT γ is based on a velocity ratio. The para-

meter 2
1 / 2R pD k a=  is the Rayleigh distance, where the radius of the trans-

ducer is a and 1pk  is the wave number for P-waves in medium one. Similarly 
( )2 ,k p sγ α = are wave numbers for P- or S-waves in medium two. From 

the propagation law for medium one, from Eq. (9.28) we have 
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The transmission law across the interface also gives (Eq. (9.94)) 
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where 
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are given in terms of the principal interface curvatures ( )11 22,h h  and 
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Finally, from the propagation law  (Eq. (9.28)) for the propagation in medium 
two we have 
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Thus, we have 
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and 
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To put the final expressions in a more compact form, let 
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[Note: 1 2,r rZ Z  are distances, not impedances here]. Then the multi-Gaussian 
beam model becomes, finally 
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with 
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The square roots appearing in Eq. (12.21) are unambiguous so that they 
can be calculated directly. 
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12.3 Measurement Model Input Parameters 

In order to model the single interface problem shown in Fig.12.1, there are 
a significant number of input parameters that need to be defined. Here we 
will outline those parameters and the manner in which they will be 
represented in MATLAB. First, there are several general parameters that 
we will call setup parameters: 
 
Setup Parameters 
f….the frequencies at which the response will be calculated (MHz) 
type1….the type of wave ('p' or 's') in medium one (a string) 
type2….the type of wave ('p' or 's') in medium two (a string) 
 
Although we will initially only consider problems where medium one is a 
fluid where type1 = 'p', we will leave type1 arbitrary to show the structure 
of input parameters in a more general setting. 
 Next, we need to define parameters that will allow us to determine 
the system function: 
 
System Parameters 
sysf….the name of a function that will either model the system function or 
calculate it experimentally (a string).  
amp….the amplitude of a modeled system function (volts/MHz) 
fc….the center frequency of a modeled system function (MHz) 
bw….the bandwidth of a modeled system function 
z1r….the distance in the fluid used in a reference scattering configuration 
to calculate the system function experimentally 
en….the noise constant used in a Wiener filter when obtaining the system 
function experimentally 
ref_file….the name of a MAT-file (a string). This file must contain the 
time axis and measured waveform obtained from the reference scattering 
configuration. These measured values are used in the function whose name 
is contained in sysf 
 
In an ultrasonic system the system function determines the effects of all 
the electrical and electromechanical components. The sysf parameter 
allows us to use either an experimentally determined system function in 
the measurement model or a model-based function. If this value is the 
string 'systf' then the model-based function systf (which is defined later) 
will be used. The function systf obtains the amplitude, center frequency, 
and bandwidth to be used in calculating the system function from the amp, 



332      Ultrasonic Measurement Modeling with MATLAB 

fc, and bw parameters, respectively.  Otherwise the user must supply the name 
of a compatible function that calculates the system function experimen-
tally. Examples of the use of both types of these functions will be given. 
The function that calculates the system function experimentally needs to 
have as one of its inputs a measured waveform from a reference scattering 
configuration. This waveform and its time axis is contained in a MATLAB 
MAT-file whose filename is given by the contents of ref_file. In this 
MAT-file the time axis is a MATLAB vector named t_ref and the 
reference waveform is a MATLAB vector named ref. The function that 
calculates the system function experimentally also must use the same trans-
ducer parameters, pulser/receiver settings, etc. as in a flaw measurement so 
that a system function can be determined that is also appropriate to the 
flaw measurement. However, in a reference experiment where the waves 
received from the front surface of an immersed block can be used to 
calculate the system function, as described in Chapter 6, the water path 
length might be different from that of a flaw measurement setup. Thus, this 
water path length is given by the parameter z1r. If there are other 
parameters that are different in the reference experiment from those used 
in the flaw measurement (such as the material properties of the block, etc.) 
then they must also be included as additional setup system parameters. 
 There are also parameters associated with the transducer. For 
circular piston probes we need to specify: 
 
Transducer parameters 
d….the transducer diameter (mm) 
fl….the transducer geometrical focal length (mm) 
 
There are also a number of geometry parameters: 
 
Geometry Parameters 
z1….the distance traveled by the sound in medium one along a central ray 
path (mm) 
z2….the distance traveled by the sound in medium two along a central ray 
path (mm) 
x2….the perpendicular distance from the central ray axis to the center of 
the flaw (see Fig. 12.1) in the plane of incidence (mm) 
y2….the perpendicular distance from the central ray axis to the center of 
the flaw (see Fig. 12.1) in a plane perpendicular to the plane of incidence 
(mm) 
i_ang….the acute angle between the normal to the transducer and the 
normal to the interface at the point where the central ray from the 
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transducer strikes the interface (deg) [This is the angle 1
pθ  shown in Fig. 

12.1]. 
R1....the principal radius of curvature (Fig. 12.1)  in the 1n direction (mm) 

2 direction (mm) 
p_ang....the angle between the plane of incidence and the 1n direction (deg) 
[This is the angle φ  shown in Fig. 12.1]. 
 
The present study will assume that the plane of incidence and the 1n direction 
are aligned so that p_ang = 0, but this parameter has been included for 
generality. 
 Not surprisingly, there are also quite a number of material para-
meters to specify: 
 
Material Parameters 
d1….the density of medium one (gm/cm3) 
d2….the density of medium two (gm/cm3) 
cp1….the P-wave speed of medium one (m/sec) 
cs1….the S-wave speed of medium one (m/sec) 
cp2….the P-wave speed of medium two (m/sec) 
cs2….the S-wave speed of medium two (m/sec) 
p1….P-wave attenuation fitting coefficients for medium one  
s1….S-wave attenuation fitting coefficients for medium one 
p2….P-wave attenuation fitting coefficients for medium two 
s2….S-wave attenuation fitting coefficients for medium two 
 
Again, for generality, we will leave the possibility of medium one having 
shear properties. The attenuation fitting coefficients will be used to define 
the attenuation coefficients in terms of powers of frequency. These will be 
discussed when we develop the attenuation model term. 
 The “flaw” cases we will consider in these examples will be of 
simple shapes (e.g. spherical voids, cylindrical holes, circular cracks) so 
that only several parameters will be needed in addition to the name of the 
function that will calculate the scattering amplitude: 
 
Flaw Parameters 
b…. radius of the flaw (mm) 
f_ang….acute angle of the flaw with respect to the central ray (deg) (see 
Fig. 12.1) 
Afunc….the name of the function that will calculate the far-field scattering 
amplitude of the flaw (a string) 

R2....the principal radius of curvature (Fig. 12.1)   in the n
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 Finally, we have a number of parameters associated with the 
particular types of waves we are considering in medium one and two. They 
are the wave speeds in medium one and two for the specified wave types 
in those media and the corresponding plane wave transmission coefficient. 
We have labeled these parameters wave parameters: 
 
Wave Parameters 
c1….the wave speed for the wave of type1 in medium one (m/sec) 
c2….the wave speed for the wave of type2 in medium two (m/sec) 
T12….the plane wave transmission coefficient (based on velocity or 
displacement ratios) appropriate to waves of type1 and type2  
 
 There is one difference between the wave parameters and the other 
parameters in that the wave parameters are derived parameters so that if 
the wave types and/or wave speeds are changed these wave parameter 
values will not be consistent with those choices unless they also are 
appropriately changed. Thus, it is necessary to update these wave parameters 
with the current values present in the setup before using them. 
 Because there are a considerable number of parameters, it is 
essential to have a flexible method to examine, retrieve, and change them 
and to pass them to other functions. Thus we have placed all of these 
parameters in a MATLAB structure named setup. This setup structure has 
a number of fields called system (for the system function), trans (for 
transducer), geom (for geometry), matl (for material), flaw (for flaw), and 
wave (for wave parameters). These fields in turn have fieldnames that are 
associated with the parameters just listed. A MATLAB function called 
setup_maker defines a complete set of the default parameters needed for a 
measurement model suitable for problems of the type shown in Fig. 12.1 
and generates the setup structure (Code Listing 12.1). In setup_maker  all 
the setup parameters are first defined and then placed into the setup 
structure. Both of these operations could have been performed in one step 
but they have been separated here strictly to make them more explicit for 
the reader. 
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Code Listing 12.1. The MATLAB function for generating a default structure, 
setup, that contains all the parameters needed for a measurement model of the case 
shown in Fig 12.1 
 
 
function setup =setup_maker( ) 
 
%setup parameters 
f = 5; 
type1 = 'p'; 
type2 ='p'; 
% system function parameters 
sysf ='systf'; 
amp = 5.0E-02; 
fc = 5; 
bw = 3; 
z1r = 0.0; 
en =0.01; 
ref_file ='empty'; 
% transducer parameters 
d = 12.7; 
fl= inf; 
%geometry parameters 
z1 = 0; 
z2 = linspace(0,200,512); 
x2 = 0.0; 
y2 =0.0; 
i_ang = 0; 
R1 = inf; 
R2 = inf; 
p_ang = 0; 
% material parameters 
d1 = 1.0; 
d2 = 1.0; 
cp1 =1480; 
cs1 = 0; 
cp2 =1480; 
cs2 = 0; 
p1 = zeros(1,5); 
s1 = zeros(1,5); 
p2 = zeros(1,5); 
s2 = zeros(1,5); 
%flaw parameters 
b =0.0; 
f_ang = 0.0; 
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Afunc = 'empty'; 
%wave parameters 
c1 =1480; 
c2 = 1480; 
T12 =1.0; 
 
% put setup in a structure 
setup.f = f; 
setup.type1 = type1; 
setup.type2 = type2; 
setup.system.sysf = sysf; 
setup.system.amp =amp; 
setup.system.fc = fc; 
setup.system.bw = bw; 
setup.system.z1r =z1r; 
setup.system.en =en; 
setup.system.ref_file = ref_file; 
setup.trans.d = d; 
setup.trans.fl =fl; 
setup.geom.z1 = z1; 
setup.geom.z2 = z2; 
setup.geom.x2 = x2; 
setup.geom.y2 = y2; 
setup.geom.i_ang = i_ang; 
setup.geom.R1 =R1; 
setup.geom.R2 = R2; 
setup.geom.p_ang = p_ang; 
setup.matl.d1 =d1; 
setup.matl.d2 = d2; 
setup.matl.cp1 =cp1; 
setup.matl.cs1 = cs1; 
setup.matl.cp2 = cp2; 
setup.matl.cs2 =cs2; 
setup.matl.p1 = p1; 
setup.matl.s1 =s1; 
setup.matl.p2 = p2; 
setup.matl.s2 = s2; 
setup.flaw.b = b; 
setup.flaw.f_ang = f_ang; 
setup.flaw.Afunc = Afunc; 
setup.wave.c1 = c1; 
setup.wave.c2 = c2; 
setup.wave.T12 = T12; 
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 It can be seen from Code Listing 12.1 that the default parameters 
are for a 5 MHz center frequency, 3 MHz bandwidth system function and a 
12.7 mm diameter planar transducer radiating a P-wave directly into a 
single medium (water), since the material properties for water are used for 
both materials. The P-wave response is to be calculated at a single 
frequency of 5 MHz at 512 points along the transducer central axis from 
zero to 200 mm, with no attenuation and with the flaw parameters initially 
set to zero. It can be seen that the wave parameters are also made con-
sistent with the other setup parameters in this default case. However, to 
remain consistent these wave parameters must be recomputed whenever 
the wave types or materials are changed, as mentioned previously. 
 This default set of parameters would be suitable for generating, for 
example, a central axis transducer beam response similar to those shown in 
Chapter 8 (see, for example, Fig. 8.9). We will demonstrate the use of this 
default set of parameters (and others) after we have developed the necessary 
MATLAB multi-Gaussian beam model. 
 The setup structure makes it easy to manipulate all the problem 
parameters and to set up various cases. Examples of using this structure 
will be given when we begin to discuss specific case studies later in this 
Chapter. A MATLAB function display_setup has also been defined that 
allows one to examine all these setup parameters. 

12.4 A Multi-Gaussian Beam Model in MATLAB 

To generate a complete multi-Gaussian beam model that can simulate the 
ideal normalized velocity field, 0/iV vγ  of Eq. (12.8),  in addition to a subset 
of the setup parameters (attenuation parameters and flaw parameters, for 
example, are not needed for this beam model) we need the Gaussian 
coefficients and we must calculate the appropriate plane wave transmission 
coefficient. The Wen and Breazeale fifteen complex coefficients, ( ),r rA B , 
have been placed in a MATLAB function gauss_c15 that returns their 
values. This function is given in the following listing: 
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Code Listing 12.2. A MATLAB function that returns the fifteen Wen and Breazeale 
coefficients. These coefficients are used to generate a multi-Gaussian beam model 
of a circular piston transducer. 
 

 
function [a, b] = gauss_c15 
 
a = zeros(15,1); 
b = zeros(15,1); 
a(1) = -2.9716 + 8.6187*i; 
a(2) = -3.4811 + 0.9687*i; 
a(3) = -1.3982 - 0.8128*i; 
a(4) = 0.0773 - 0.3303*i; 
a(5) = 2.8798 + 1.6109*i; 
a(6) = 0.1259 - 0.0957*i; 
a(7) = -0.2641 - 0.6723*i; 
a(8) = 18.019 + 7.8291*i; 
a(9) = 0.0518 + 0.0182*i; 
a(10) = -16.9438 - 9.9384*i; 
a(11) = 0.3708 + 5.4522*i; 
a(12) = -6.6929 + 4.0722*i; 
a(13) = -9.3638 - 4.9998*i; 
a(14) = 1.5872 - 15.4212*i; 
a(15) = 19.0024 + 3.6850*i; 
b(1) = 4.1869 - 5.1560*i; 
b(2) = 3.8398 - 10.8004*i; 
b(3) = 3.4355 - 16.3582*i; 
b(4) = 2.4618 - 27.7134*i; 
b(5) = 5.4699 + 28.6319*i; 
b(6) = 1.9833 - 33.2885*i; 
b(7) = 2.9335 - 22.0151*i; 
b(8) = 6.3036 + 36.7772*i; 
b(9) = 1.3046 - 38.4650*i; 
b(10) = 6.5889 + 37.0680*i; 
b(11) = 5.5518 + 22.4255*i; 
b(12) = 5.4013 + 16.7326*i; 
b(13) = 5.1498 + 11.1249*i; 
b(14) = 4.9665 + 5.6855*i; 
b(15) = 4.6296 + 0.3055*i; 
 
 
 
The plane wave transmission coefficient must be calculated consistent with 
the material properties and wave types specified in the setup structure 
parameters. We will use a MATLAB function that is passed the setup 
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structure and returns the appropriate transmission coefficient. The MATLAB 
function fluid_solid, (see Code Listing 12.3) for example, calculates the 
plane wave transmission coefficient for a fluid-solid interface using the 
explicit expressions given in Appendix D (Eq. (D.59)). For a refracted S-
wave, this transmission coefficient will be complex if the first critical angle is 
exceeded. The function fluid_solid calculates this complex transmission 
coefficient for positive frequencies only. Thus, if one wants to synthesize a 
pulse with these calculations, one will need to follow the steps discussed in 
Appendix A in performing the necessary FFT.  
 
Code Listing 12.3. A MATLAB function for calculating the plane wave trans-
mission coefficient  for a fluid-solid interface. 
 
 
function  T12 = fluid_solid(setup) 
% fluid_solid(setup) computes the P-P (tpp) 
% and P-S (tps) transmission coefficients based on velocity ratios 
% for a plane fluid-solid interface. It obtains the necessary input 
% parameters from the setup structure and then returns the  
% appropriate transmission coefficient 
 
 
% get setup parameters 
type1 =setup.type1; 
type2 =setup.type2; 
inc= setup.geom.i_ang; 
d1 = setup.matl.d1; 
d2 =setup.matl.d2; 
cp1 = setup.matl.cp1; 
cs1 =setup.matl.cs1; 
cp2 =setup.matl.cp2; 
cs2 =setup.matl.cs2; 
 
% consistency check (if material one is not a fluid 
% then can't use this fluid-solid trans. coefficient) 
 
if strcmp(type1, 's') | cs1 ~=0 
    error('wrong wave type or wave speed for medium 1') 
end 
 
 
% calculate transmission coefficients 
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iang = (inc.*pi)./180; 
sinp = (cp2/cp1)*sin(iang); 
sins =(cs2/cp1)*sin(iang); 
len = length(sinp); 
for j=1:len 
if sinp(j) >= 1 
 cosp(j) = i*sqrt(sinp(j)^2 - 1); 
 else 
 cosp(j) = sqrt(1 - sinp(j)^2); 
 end 
end 
for j=1:len 
if sins(j) >= 1 
 coss(j) = i*sqrt(sins(j)^2 - 1); 
 else 
 coss(j) =sqrt(1 - sins(j)^2); 
 end 
end 
denom = cosp + (d2/d1)*(cp2/cp1)*sqrt(1-sin(iang).^2).*(4.*((cs2/cp2)^2)… 
.*(sins.*coss.*sinp.*cosp) + 1 - 4.*(sins.^2).*(coss.^2)); 
tpp = (2*sqrt(1 - sin(iang).^2).*(1 - 2*(sins.^2)))./denom; 
tps = -(4*cosp.*sins.*sqrt(1 - sin(iang).^2))./denom; 
 
%select appropriate coefficient 
if strcmp(type2, 'p') 
    T12 = tpp; 
elseif strcmp(type2, 's') 
    T12 = tps; 
else 
    error('wrong wave type specification') 
end 
 
 
 
 
Having the setup structure, the multi-Gaussian beam coefficients, and the 
plane wave transmission coefficient, we now are in a position to develop 
the complete multi-Gaussian beam model. The MATLAB function 
MGbeam extracts the setup parameters it needs from the setup structure 
(which is the only input to MGbeam); calls the function c_gauss15 to 
obtain the Gaussian beam coefficients; updates the setup.wave parameters 
c1 and c2 to be consistent with the wave types; calls the fluid_solid 
function to compute the plane wave transmission coefficient (and then 
updates the setup structure with that coefficient); computes some of the 
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additional parameters appearing explicitly in the beam model, and then 
computes the ideal velocity field in Eq. (12.20). A function init_z is called 
to generate an empty array of velocity values before the beam model 
calculations are performed. That function is given in Code Listing 12.4. 
This function decides what the largest size of matrix is present for the 
parameters f, z1, z2, x2, and y2, and pre-allocates an array of zeros of the 
same size for the velocity field, v, to be calculated. This pre-allocation is 
for efficiency only. One could have instead simply initialized v with v = 0. 
MGbeam is coded to allow f, z1, z2, x2, and y2 to be either scalars, 
vectors, or 2 by 2 arrays so that one can perform a number of different 
studies and plot various combinations of parameters, as will be shown 
shortly. MGbeam is not coded to allow the incident angle with the 
interface to be other than a single scalar value. However, multiple calls to 
MGbeam with different values of setup.geom.i_ang could be used to 
perform those types of studies.  
 
Code Listing 12.4.  A MATLAB function for pre-allocating memory for the velocity 
calculations of the same size as the largest array present in the input parameters f, 
z1, z2, x2, y2. 
 
 
function v =init_z(setup) 
% get parameters that may not be scalars 
f =setup.f; 
z1 = setup.geom.z1; 
z2=setup.geom.z2; 
x2 =setup.geom.x2; 
y2 = setup.geom.y2; 
%get dimensions, put in rows 
A = [size(f); size(z1);size(z2);size(x2); size(y2)]; 
%get product of dimensions for each varaible 
prod =A(:,1).*A(:,2); % this is a column vector 
%find which row (or rows) have largest dimension 
ind = find( prod = = max(prod)); 
%pick first row with largest dimension 
val = ind(1); 
% initialize v with  zeros of same size  
% as the parameter(s) with largest dimensions 
v = zeros(A(val,:)); 
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For a spherically focused probe the Gaussian beam coefficients rB  are simply 
changed by letting /r r RB B iD F→ + , where RD  is the Rayleigh length 
and F is the focal length, as discussed in Chapter 9. The propagation term 

( )1 1 2 2exp pik z ik zγ+  is not included in the calculations since this term only 
generates a time delay 0 1 1 2 2/ /pt z c z cγ= +  in going from the transducer to 
the point in the solid and this delay can easily be added in separately, if 
needed, by simply shifting the time axis appropriately. Thus, for pulses 
calculated using MGbeam the time t = 0 corresponds to the time when the 
incident quasi-plane wave is at the “center” of the flaw.  MGbeam returns 
the ideal velocity field, 0/iV vγ , and the updated setup structure. As can be 
seen from Code Listing 12.5, the multi-Gaussian beam model is calculated 
in only the last fourteen lines of that Code. All the other parts of MGBeam 
simply prepare the necessary input parameters. Thus, except in very 
special cases there are no alternative beam models as simple and fast as a 
multi-Gaussian beam model. 
 
Code Listing 12.5.  A MATLAB function MGbeam for calculating the wave field 
of circular piston transducer (planar or focused) radiating through a fluid-solid 
interface into a solid. The function uses a multi-Gaussian beam model. 
 
 
function [v,setup ]=MGbeam(setup) 
 
% get setup parameters 
f = setup.f;   %frequency or frequencies (MHz) 
type1 = setup.type1;          % wave type in medium one 
type2 = setup.type2;  % wave type in medium two 
     
a = setup.trans.d/2;  % transducer radius (mm) 
Fl = setup.trans.fl;  % transducer focal length (mm)  
 
z1 = setup.geom.z1;  % water path length (mm) 
z2 = setup.geom.z2;           % path length in solid (mm) 
x2 =setup.geom.x2;         % distance (mm) from ray axis in POI  
y2 = setup.geom.y2;  % distance (mm) perpendicular to the POI 
Rx = setup.geom.R1;  % interface radius of curvature (mm) in POI 
Ry =setup.geom.R2;         % interface radius of curvature (mm) out of POI 
iang = setup.geom.i_ang;  % incident angle (deg) 
 
d1 = setup.matl.d1;  % density (fluid) 
d2 =setup.matl.d2;  % density (solid) 
cp1 = setup.matl.cp1;  % compressional wave speed -fluid  (m/sec) 
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cp2 = setup.matl.cp2;  % compressional wave speed -solid (m/sec) 
cs2 = setup.matl.cs2;  % shear wave speed -solid (m/sec) 
 
[A, B] = gauss_c15;  % Wen and Breazeale coefficients (15) 
 
% update setup.wave wave speeds 
if strcmp(type1, 'p') 
    setup.wave.c1 =cp1; 
elseif strcmp(type1, 's') 
    setup.wave.c1 = cs1; 
else 
    error('wrong wave type (must be p or s) ') 
end 
 
if strcmp(type2, 'p') 
    setup.wave.c2 =cp2; 
elseif strcmp(type2, 's') 
    setup.wave.c2 = cs2; 
else 
    error('wrong wave type (must be p or s)') 
end 
% calculate transmission coefficient, update setup 
setup.wave.T12 = fluid_solid(setup);  
 
% wave speeds and transmission coefficient for the beam model 
c1 =setup.wave.c1; 
c2 =setup.wave.c2;             % wave speed for wave type2 
T = setup.wave.T12;           % transmission coefficient 
 
% parameters appearing in beam model 
 
cosi = cos(pi*iang/180);  % cosine of incident angle 
sinr = (c2/c1)*sin(pi*iang/180);      % sine of refracted angle from Snell's law 
if sinr >= 1       
   error('Beyond the Critical angle')      % no transmitted wave of given wave type 
else 
   cosr = sqrt( 1 - sinr^2); 
end  
 
   h11 = 1/Rx;  %curvature 
   h22 = 1/Ry;  %curvature 
zr = eps*(f == 0) + 1000*pi*(a^2)*f./c1; % "Rayleigh" distance  
k1 = 2*pi*1000*f./c1;    % wave number in fluid 
 
%initialize predicted velocity with zeros of a size 
% compatible with largest array in f, z1, z2, x2, y2 parameters 
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v = init_z(setup); 
 
%multi-Gaussian beam model 
 
for j = 1:15   % form up multi-Gaussian beam model 
 
 b =B(j) + i*zr./Fl;  % modify coefficients for focused probe 
    % Fl = inf for planar probe  
     
q = z1 - i*zr./b; 
K = q.*(cosi -(c1/c2)*cosr); 
M1 = (cosi^2 +K.*h11)./cosr^2; 
M2 =1 + K.*h22; 
ZR1 = q./M1; 
ZR2 =q./M2; 
m11 = 1./(ZR1 +(c2/c1).*z2); 
m22 = 1./(ZR2 +(c2/c1).*z2);  
   t1 = A(j)./(1 + (i.*b./zr).*z1); 
   t2 = t1.*T.*sqrt(ZR1).*sqrt(ZR2).*sqrt(m11).*sqrt(m22); 
   v = v + t2.*exp(i.*(k1./2).*(m11.*(x2.^2) + m22.*(y2.^2))); 
 
end 
 
 
 
As a simple test of this multi-Gaussian beam model we can use the default 
setup structure to simulate the on-axis wave field of a 5MHz, 12.7 mm 
diameter circular piston transducer radiating into water. The following 
MATLAB commands will generate the plot shown in Fig. 12.2: 
 
>> setup = setup_maker; 
>> [v, setup] = MGbeam(setup); 
>> z2 =setup.geom.z2; 
>> plot(z2, abs(v)) 
>> xlabel('z-distance (mm)') 
>> ylabel('|v/v_0|') 
 
As seen in Fig. 12.2 the beam model accurately predicts the near-field of 
the transducer down to a distance of approximately a transducer diameter, 
as discussed in Chapter 9. 
 Other plots also easy to simulate. From Fig. 12.2 we see that there 
is an on-axis null near z2 = 70 mm, so we can examine the cross-axis 
behavior at that distance through the commands: 
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Fig. 12.2. The on-axis field of a 5 MHz, 12.7 mm diameter circular piston trans-
ducer radiating into water as calculated with a multi-Gaussian beam model. 

 

 
Fig. 12.3. The wave field in a plane perpendicular to the axis of a 5 MHz, 12.7 mm 
diameter planar piston transducer radiating into water at a distance approximately 
equal to one-half a near field distance along the axis. 
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>> setup.geom.z2 =70; 
>> x2 = linspace(-20,20, 512); 
>> setup.geom.x2 = x2; 
>> [v, setup] = MGbeam(setup); 
>> plot(x2, abs(v)) 
>> xlabel('x2-distance, (mm)') 
>> ylabel(' | v/v_0 |') 
 
The results are shown in Fig. 12.3. In a similar fashion we can see a 2-D 
cross-section of the entire wave field with the commands: 
 
>> %  recall, we already had set x2 = linspace(-20,20, 512); 
>> z2 = linspace(0, 200, 512); 
>> [zz, xx] =meshgrid(z2, x2); 
>> setup.geom.z2 = zz; 
>> setup.geom.x2 = xx; 
>> [v, setup] = MGbeam(setup); 
>> image(z2, x2,abs(v)*50)    % scale the result to get a good 
     % color map 

 
>> xlabel('z2-distance (mm)') 
>> ylabel('x2-distance (mm)') 
 
The results are shown in Fig. 12.4. 
 
 
 

 
Fig. 12.4. A 2-D image of the near-field beam profile for a 5 MHz, 12.7 mm 
diameter planar piston transducer radiating into water.  Note the scales on the two 
axes are very different. 
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Fig. 12.5. The on-axis wave field of a 10 MHz, 12.7mm diameter, 76.2mm focal 
length focused transducer radiating into water as calculated with a multi-Gaussian 
beam model. 

To simulate a spherically focused probe and examine the on-axis response, 
consider a 10 MHz, 12.7 mm diameter, 76.2 mm focal length transducer 
radiating into water. This can be simulated via the commands: 
 
>> setup.f =10; 
>> setup.geom.x2 =0.; 
>> setup.geom.z2 =z2;  % put a vector set of values back into setup 
>> setup.trans.fl = 76.2; 
>> [v, setup] = MGbeam(setup); 
>> plot(z2, abs(v)) 
>> xlabel('z2-distance (mm)') 
 
The results are shown in Fig. 12.5. Note that we changed the frequency of 
the calculation by changing the setup.f  parameter, not the setup.system.fc 
(center frequency) parameter. The center frequency parameter refers to a 
parameter of the frequency profile of the system function which is needed 
to synthesize a time domain waveform. This center frequency parameter 
will not affect beam calculations performed at a single frequency. To 
synthesize a transducer pulse, however, we would have to let setup.f be an 
array of frequencies and multiply the output of MGbeam function by a 
system function to simulate the spectral behavior of the system. We will 
show simulation examples of this type later. 
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Fig. 12.6. The attenuated amplitude versus distance for propagation in water at room 
temperature and at a frequency of 10 MHz. 

12.5 Ultrasonic Attenuation in the Measurement Model 

Ultrasonic material attenuation is a part of the measurement model which 
must be determined experimentally. The linear attenuation terms appearing 
in the attenuation expression ( ) ( )1 1 2 2exp p z zγα ω α ω⎡ ⎤− −⎣ ⎦  are frequency 
dependent so that normally one fits the measured values of these linear 
attenuation terms to functions with a simple frequency dependency (linear, 
quadratic, etc.) that best match the experimental results over the bandwidth 
of the measurement system. The MATLAB function attenuate in 
Code Listing 12.6 defines each of the linear attenuation coefficients for the 
appropriate wave types traveling in medium one and two in terms of five 
fitting coefficients for a polynomial of up to fourth order in frequency, i.e. 
we use a fitting expression for an attenuation coefficient α  in the form 

2 3 4
1 2 3 4 5a a f a f a f a fα = + + + + . Those fitting coefficients must be placed 

in setup.matlp1, setup.matls1, setup.matlp2, and setup.matls2 . 
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Code Listing 12.6.  A MATLAB function for calculating attenuation terms for 
propagation in two adjacent media. 

 
 
function y = attenuate(setup) 
% atten(setup) generates a frequency dependent attenuation factor 
% as a function of the frequency, f, and the distances z1, z2 in (mm)  
% traveled in two media 
% For water at room temp for the first medium , take p1(1) = p1(2) = p1(4) 
% =p1(5)=0, 
% and p1(3) = 25.3E-06 if f is in MHz, distances are in mm 
 
f=setup.f; 
type1=setup.type1; 
type2=setup.type2; 
z1 =setup.geom.z1; 
z2 =setup.geom.z2; 
p1 =setup.matl.p1; 
s1 =setup.matl.s1; 
p2=setup.matl.p2; 
s2=setup.matl.s2; 
if strcmp(type1, 'p') 
 a1 =p1; 
elseif  strcmp(type1, 's') 
 a1 =s1; 
else 
error('wrong wave type') 
end 
 
if strcmp(type2, 'p') 
 a2 =p2; 
elseif  strcmp(type1, 's') 
 a2 =s2; 
else 
error('wrong wave type') 
end 
 
d1 = a1(1) + a1(2)*f + a1(3)*f.^2  + a1(4)*f.^3  + a1(5)*f.^4; 
d2 = a2(1) + a2(2)*f + a2(3)*f.^2  + a2(4)*f.^3  + a2(5)*f.^4; 
 
y = exp(-d1.*z1).*exp(-d2.*z2); 
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To illustrate this function, consider the attenuated amplitude versus distance 
in water at room temperature for a frequency of 10 MHz where the attenua-
tion coefficient is 6 225.3 10 fα −= × with f the frequency in MHz. Using the 
default setup structure and the MATLAB commands: 
 
>> setup.f =10.; 
>> z1 =linspace(0,1000,512); 
>> setup.geom.z1  = z1; 
>> setup.geom.z2 =0.0; 
>> setup.matl.p1 = [ 0  0  25.3E-06  0  0]; 
>> y=attenuate(setup); 
>> plot(z1, y) 
>> xlabel('z1, mm') 
>> ylabel('amplitude') 
 
we obtain the plot show in Fig. 12.6 ( the default type1 ='p' here and the 
other attenuation fitting coefficients are all zero). 

12.6 The System Function 

The system function, ( )s ω , is found in practice by either performing a 
measurement of the received voltage in a calibration setup or by measuring 
all the ultrasonic system components in the sound generation and reception 
processes and combining them to form up the ( )s ω , as described in previous 
Chapters. However, we can also simulate this function directly to model its 
effects on the measurement process.   

 To model the system function we will use a simple Gaussian 
function of the type discussed in Appendix A given by 

( ) ( ) ( )2 22 2 2exp 4 exp ,c cF f A a f f A aπ ω ω⎡ ⎤ ⎡ ⎤= − − = − −⎣ ⎦ ⎣ ⎦  (12.22)

where A is the amplitude, 2f πω=  is the frequency and cf  is the center fre-
quency, both measured in MHz. The inverse Fourier transform of this 
function can be obtained analytically as 

( ) ( ) ( )2 2exp 2 exp / 4 ,
2 c

Af t i f t t a
a

π
π

= − −  (12.23)
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which is complex since we have not included any negative frequency 
components in ( )F f . As shown in Appendix A we can recover a real 
time domain signal, ( )v t , from only the positive frequency components if 
we take twice the real part of  Eq. (12.23) which gives 

( ) ( ) ( )2 2cos 2 exp / 4 .c
Av t f t t a

a
π

π
= −  (12.24)

In all the model terms in our measurement models, we will likewise only 
model those terms for positive frequencies and then take twice the real part 
of the result to recover real time domain functions. 
 It is convenient to rewrite ( )F f  in a form which is parameterized 
not in terms of a but instead in terms of the bandwidth, bw, where bw is 
the width of the Gaussian, in MHz, where its amplitude is one-half of its 
maximum value (see Fig. A.5). This gives 

( ) ( )2 22 2 2 2
0

1exp 4 exp
2ca f f a bwπ π⎡ ⎤ ⎡ ⎤− − = − =⎣ ⎦ ⎣ ⎦  (12.25)

so solving for a in terms of bw we find 

ln 2 .a
bwπ

=  (12.26)

For small center frequencies and large bandwidths, the simple Gaussian 

ponent. Most transducers band limit the measured ultrasonic response so 
that the response should be very small at low frequencies. To model this 
behavior we therefore modify the Gaussian slightly through a sine function 
that tapers the response to zero at zero frequency. Thus, the simulated 
system transfer factor, ( )s f , we will model is given by 

( )
( )

( )

sin
2 .c

c

c

fF f f f
fs f

F f f f

π⎧ ⎡ ⎤
<⎪ ⎢ ⎥= ⎨ ⎣ ⎦

⎪ ≥⎩

 (12.27)

This modification means that the corresponding time domain waveform 
will not be given exactly by Eq. (12.24) but in many cases the difference is 
small. The MATLAB function in Code Listing 12.7 returns the system 
function given in Eq. (12.27): 
 

function in Eq. (12.22) will have a non-zero D.C. (zero frequency) com-
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Code Listing 12.7.  A MATLAB function for simulating the system function. 
 
 
function y = systf (setup) 
% systf(setup) models the system function by a Gaussian window function  
% of amplitude amp centered at frequency fc and with a bandwidth bw defined to 
% be the spread in frequency at the half amplitude point in the Gaussian. 
% The Gaussian is tapered to zero at frequencies below fc with a sine function to  
% guarantee the dc value is always zero. 
% For small fc and large bw, this tapering will distort the Gaussian 
% 
f =setup.f; 
amp = setup.trans.amp; 
fc = setup.trans.fc; 
bw = setup.trans.bw; 
a = sqrt(log(2))/(pi*bw); 
s1 = exp(-(2*a*pi*(f - fc)).^2).*(f > fc); 
s2 = exp(-(2*a*pi*(f - fc)).^2).*sin(pi*f/(2*fc)).*(f <= fc); 
y = amp*(s1 + s2);  
 
 
 
 To illustrate this function we can use the default setup structure 
where amp = .05 volts/MHz, fc = 5 MHz, and bw = 3 MHz with the com-
mands: 
 
>> f = linspace(0, 20, 512); 
>> setup.f = f; 
>> y=systf(setup); 
>> plot(f, y) 
>> xlabel( ' f, MHz') 
>> ylabel('volts/MHz') 
 
to obtain the system function shown in Fig. 12.7. Note that the system 
function modeled here is a purely real function. A measured system function, 
however, will generally be a complex-valued function. 
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Fig. 12.7. A simulated system function. 

 
Fig. 12.8. The pulse-echo far-field scattering amplitude versus frequency for a 
1 mm radius spherical void in steel, calculated using the Kirchhoff approximation. 

 

12.7 Flaw Scattering Models 

As shown in Chapter 10, the Kirchhoff approximation is a very useful 
approximation for obtaining the flaw scattering properties of a number of 
flaws. We  will develop MATLAB  functions  that  will  use the  Kirchhoff  
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approximation for modeling the pulse-echo far-field scattering amplitude 
of a spherical void and a circular crack.  The explicit expressions for these 
scattering amplitudes were given in Chapter 10. For the spherical void of 
radius b we found (Eq. (10.14): 
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; exp exp ,
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(12.28)

while for wave incident on a circular crack of radius b at an angle, θ , with 
respect to the crack normal we found (Eq. (10.36)): 
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Code Listing 12.8 describes the function A_void that uses Eq. (12.28) and 
returns the pulse-echo scattering amplitude of the spherical void. 
 
Code Listing 12.8.  A MATLAB function for modeling the pulse-echo far-field 
scattering amplitude of a spherical void. 
 
 
function A = A_void(setup) 
% A_VOID calculates the pulse-echo far-field scattering amplitude 
% of a spherical void in the Kirchhoff approximation, using 
% the frequency f in setup.f, the radius b in  setup.flaw.b, 
% and the wave speed for the wave type in setup.wave.c2. 
% The calling sequence is A = A_void(setup). The scattering 
% amplitude, A, (in mm) is returned. 
 
%get the parameters 
f =setup.f; 
c = setup.wave.c2; 
b = setup.flaw.b; 
 
%calculate the wave number kb (f in MHz, b in mm, c in m/sec) 
kb = (2000*pi*b*f)./c; 
 
%calculate the pulse-echo scattering amplitude 
kb = kb + eps*(kb == 0);   % prevent division by zero 
A =(-b/2)*exp(-i*kb).*(exp(-i*kb)-sin(kb)./(kb)); 
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Similarly, Code Listing 12.9 gives the MATLAB function A_crack that 
uses Eq. (12.29) and returns the pulse-echo scattering amplitude of the 
circular crack. 
 
Code Listing 12.9.  A MATLAB function for modeling the pulse-echo far-field 
scattering amplitude of a circular crack. 
 
 
function A = A_crack(setup) 
% A_CRACK calculates the pulse-echo far-field scattering amplitude 
% of a circular crack in the Kirchhoff approximation, using the 
% frequency f in setup.f, the radius b in setup.flaw.b, the acute 
% angle between the incident wave direction and the crack normal in 
% setup.flaw.f_ang, and the wave speed for the wave type in 
% setup.wave.c2.  
% The calling sequence is A = A_crack(setup). The  
% scattering amplitude,A, (in mm) is returned. 
 
%get the parameters 
f = setup.f; 
c = setup.wave.c2; 
b = setup.flaw.b; 
ang = setup.flaw.f_ang; 
 
% put the angle in radians, calculate the wave number 
iang = ang.*pi./180; 
kb = (2000*pi*b*f)./c; 
 
% calculate the pulse-echo scattering amplitude 
arg = 2*sin(iang).*kb;       % argument of bessel function 
arg = arg + eps*(arg == 0);  % prevent division by zero 
A = i*kb.*b.*cos(iang).*(besselj(1, arg)./arg); 
 
 
 
 We can use these functions to verify some of the results presented 
in Chapter 10. First, consider the pulse-echo frequency domain response of 
a 1 mm radius spherical void in steel ( 2pc  = 5900 m/sec). Using the com-
mands: 
 
>> clear 
>> setup=setup_maker; 
>> setup.f =linspace(0,30,512); 
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Fig. 12.9. The pulse-echo far-field scattering amplitude versus frequency for a 
1 mm radius circular crack in steel, calculated using the Kirchhoff approximation. 
The incident angle 10θ =  with respect to the crack normal. 

>> setup.wave.c2 =5900; 
>> setup.flaw.b =1.; 
>> setup.flaw.Afunc ='A_void'; 
>> f = setup.f; 
>> A = feval(setup.flaw.Afunc, setup); 
>> plot(f, abs(A)) 
>> xlabel('frequency, MHz') 
>> ylabel('scatt amp, mm') 
 
generates the plot shown in Fig. 12.8 which is identical to Fig. 10.6. Notice 
that we put the frequencies and wave speed into the appropriate parameters 
in setup and we have placed the name of the flaw function in the setup 
structure and then retrieved it to evaluate it with the function feval. This 
process was done simply to illustrate how in a measurement model the 
setup structure will be used to obtain the flaw response. In this case we 
could have just called the function A_void directly with setup as its 
argument. 
  The same type of pulse-echo response for a 1 mm radius crack in 
steel where the incident direction is at 10o from the crack normal can be 
found using the same setup parameters just  defined plus the commands 
 
>> setup.flaw.f_ang = 10; 
>> setup.flaw.Afunc ='A_crack'; 
>> Ac =feval(setup.flaw.Afunc, setup); 
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>> plot(f, abs(Ac)) 
>> xlabel('frequency, MHz') 
>> ylabel('scatt amp, mm') 
 
These commands generate the plot shown in Fig. 12.9 which is identical to 
the same plot shown in Fig. 10.17. 

12.8 The Thompson-Gray Measurement Model 

We now have all the MATLAB functions defined that will allow us to 
construct a complete ultrasonic measurement model of the type given in 
Eq.(12.6) where the flaw is assumed to be small enough so that we can 
neglect the beam variations over the flaw surface. Thompson and Gray 
first developed this type of measurement model in 1983 [11.2]. The 
MATLAB function TG_PE_MM (Code Listing 12.10), like all our other 
functions uses only the setup structure as its input. TG_PE_MM returns an 
updated setup structure and the measured voltage, RV , in the frequency 
domain obtained from a flaw in the solid using the Thompson-Gray 
measurement model for a pulse-echo immersion setup of the type shown in 
Fig 12.1. The multi-Gaussian beam model function MGbeam is used to 
predict the transducer velocity field at the flaw and the far-field scattering 
amplitude is obtained by the MATLAB function whose name is specified 
in the setup parameter setup.flaw.Afunc. The system function is modeled 
by the MATLAB function systf if the setup.sysf contains the string 'systf' 
(the default) or this function is obtained experimentally by use of the 
function whose name is contained in setup.sysf. The attenuation of the 
materials in the measurement model is accounted for by the MATLAB 
function attenuate. 
 
Code Listing 12.10.  The MATLAB function TG_PE_MM for modeling the res-
ponse of a flaw using the Thompson-Gray ultrasonic measurement model. 
 
 
function [Vf, setup] =TG_PE_MM(setup) 
% TG_PE_MM generates the frequency components of the  
% output voltage, Vf, of an ultrasonic pulse-echo immersion 
% measurement system generated by a flaw.  
% The function returns Vf  as well as an updated setup structure 
% The calling sequence is [Vf, setup] =TG_mm(setup); 
 
% First, compute the incident beam velocity and update  
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% the setup structure 
[v, setup] = MGbeam(setup); 
 
%get the setup parameters  needed for the constant term 
%in the measurement model 
f = setup.f; 
r= setup.trans.d/2;    % transducer radius 
d1 =setup.matl.d1; 
d2 =setup.matl.d2; 
c1 = setup.wave.c1; 
c2 = setup.wave.c2; 
 
%compute wave number in medium two and  
%the constant term in the measurement model 
 
k2 = (2000.*pi.*f)./c2; 
k2 =k2 + eps*( k2 == 0);  % prevent division by zero 
K= (4.*d2.*c2)./(-i.*k2.*r^2.*d1.*c1); 
 
% check to see if a model-based or experimentally determined system 
% function is to be used 
if strcmp(setup.sysf, 'systf') 
    sys = systf(setup); 
else 
    sys =feval(setup.sysf, setup); 
end 
 
% find flaw type to be used 
if strcmp( setup.flaw.Afunc, 'empty') 
    error('flaw function not specified in setup') 
else 
    A = feval(setup.flaw.Afunc, setup); 
end 
 
%compute output voltage, Vf, (volts/MHz) 
Vf = sys.*(v.*attenuate(setup)).^2.*A.*K; 
 
 
 
 To illustrate an application of the MATLAB function TG_PE_MM 
we will describe a MATLAB calculation that uses the setup shown in 
Fig. 12.10 (b), where a planar, 5 MHz transducer is being used in pulse-echo 

normal incidence through a water-solid interface. These parameters are  
to examine a spherical 0.6921 mm diameter void in a glass block at 
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Fig. 12.10. (a) A reference scattering configuration where a planar 12.7 mm 
diameter, 5 MHz transducer receives the P-waves reflected from a water-glass 
interface. (b) A pulse-echo flaw measurement setup where the transducer in (a) 
receives the P-waves scattered from a 0.6921 mm diameter spherical void in glass 
located on the central axis of the transducer. The water path length is the same 
(50.8 mm) in both measurements. 

similar to those of a experimental setup that  we  will discuss next. We will 
simulate the received voltage time-domain waveform from the void. If we 
call the function setup_maker then we need to change only those para-
meters that are different from the default setup structure that is generated 
by this function. In this case we will set up a range of frequencies from 0 
to 20 MHz to do our calculations and define the measured wave speed of 
the water (the water density was taken as the default value of 1.0) and also 
the density and wave speed of the glass: 
 
>> setup = setup_maker; 
>> f = s_space(0, 20, 200); 
>> cp1 = 1484; 
>> d2 = 2.2; 
>> cp2 = 5969.4; 
>> cs2 = 3774.1; 
 
The MATLAB function s_space (xmin, xmax, num) used here (the 
MATLAB code listing is given in Appendix G) is similar to the MATLAB 
function linspace. The s-space function gives a set of num evenly spaced 
sampled values from xmin to xmax - dx, where dx = (xmax - xmin)/num is 
the sample spacing, whereas the MATLAB function linspace(xmin, xmax, 
num) gives set of num evenly sampled values from xmin to xmax with 
sample spacing dx = (xmax – xmin)/(num-1). As discussed in Appendix A 
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the function s_space generates precisely the sampled values needed in both 
the time and frequency domains to perform Fourier analysis with FFTs, 
but the built-in MATLAB function linspace does not.  
 We will also specify the water path length from the transducer to 
the interface and distance from the interface to center of the spherical void 
in the solid (see Fig. 12.10 (b)):  
 
>> z1 = 50.8; 
>> z2 = 19.62725; 
 
The default system function center frequency of 5 MHz can be left unchanged 
but the system function amplitude and bandwidth will be chosen to be 
similar to the experimental example we will discuss shortly: 
 
>> amp = 0.08; 
>> bw = 4; 
 
Although in this example the parameters amp and bw are the only values 
needed to predict the system function, when we determine this function 
experimentally we will also need to specify the water path length to be 
used in a reference experiment so that anticipating the need for that 
variable, we will also set it appropriately here: 
 
>> z1r = 50.8; 
 
The transducer diameter (12.7 mm) and focal length (infinity) are compati-
ble with the default values generated by setup_maker. The attenuation of 
the glass block is very small so that it will be neglected. The P-wave 
attenuation of the water is included as a quadratic function of frequency: 
 
>> p1 = [ 0 0 .02479E-03 0 0]; 
 
Finally, the flaw radius is specified and the name of the function that 
calculates the pulse-echo far-field scattering amplitude of a spherical void 
in the Kirchhoff approximation is given: 
 
>> b = .34605; 
>> flaw_name = ‘A_void’; 
 
All of the other default setup parameters can be used unchanged so it is 
only necessary to update these parameters: 
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>> setup.f = f; 
>> setup.trans.amp = amp; 
>> setup.trans.bw = bw; 
>> setup.z1r = z1r; 
>> setup.geom.z1 =z1; 
>> setup.geom.z2 =z2; 
>> setup.matl.cp1 = cp1; 
>> setup.matl.d2 = d2; 
>> setup.matl.cp2 = cp2; 
>> setup.matl.cs2 =cs2; 
>> setup.matl.p1 = p1; 
>> setup.flaw.b =b; 
>>setup.flaw.Afunc =flaw_name; 
 
With these changes then the output voltage in the frequency domain, Vf, 
and an updated setup structure can be calculated: 
 
>> [Vf, setup] = TG_PE_MM(setup); 
 
If we want to examine the time-domain waveform from the void, we must 
extend the maximum frequency beyond the 20 MHz value used in the 
calculations and zero pad the Vf values. Here we have extended the 
maximum frequency to 100 MHz, using the same frequency spacing, df, 
used in calculating Vf. The sampling time interval, dt, is then the reci-
procal of this max frequency, and we can use this time interval to generate 
a time window, t. Since we are only going to use the positive frequency 
components of the response to calculate the wave form, we have also 
divided the zero frequency value of Vf by two: 
 
>> df = f(2) - f (1); 
>> dt = 1/(1000*df); 
>> t= s_space(0,1000*dt , 1000); 
>> Vfe = [ Vf  zeros(1, 800)]; 
>> Vfe(1) = Vfe(1)/2; 
 
We are now able to calculate the time domain void response with an 
inverse FFT of these positive frequency components: 
 
>> vt = 2*real(IFourierT(Vfe, dt)); 
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Fig. 12.11. The simulated response pulse-echo P-wave response of a spherical 
void for the setup shown in Fig. 12.10 (b).   

and we can plot the result. Since we have omitted all the time delay terms 
in these calculations, t = 0 corresponds to when the waves reach the center 
of the flaw so that we need to use the t_shift and c-shift functions to obtain 
a result where the responses before t = 0 are not in the upper part of the 
window:  
 
>> plot(t_shift (t, 100), c_shift(vt,100)) 
 
The simulated wave form (in volts) is shown in Fig. 12.11. All of the 
above MATLAB commands are contained in the MATLAB script 
TG_sphere_example1(Code Listing 12.11). This simple example shows 
how one can use the MATLAB functions to model a flaw response where 
the system function was taken to be the simple Gaussian function 
described previously. 
  
Code Listing 12.11.  A MATLAB script for calculating the pulse-echo response 
of an on-axis pore at normal incidence through a fluid-solid interface. 
 
 
% TG_sphere_example1 script 
% This script calculates the pulse-echo P-wave response of an on-axis  
% spherical pore interrogated by a 5 MHz planar probe through a  
% fluid-solid interface at normal incidence 
clear 
setup = setup_maker; 
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% setup parameters that need to be specified for this example 
f =s_space(0, 20, 200); 
cp1 = 1484.; 
d2 = 2.2; 
cp2 = 5969.4; 
cs2 = 3774.1; 
z1 = 50.8; 
z2 = 19.62725; 
amp =0.08; 
bw = 4.; 
z1r =50.8; 
p1 = [ 0 0 0.02479E-03  0 0]; 
b =0.34605; 
flaw_name = 'A_void'; 
setup.f =f; 
setup.system.amp = amp; 
setup.system.bw = bw; 
setup.system.z1r =z1r; 
setup.geom.z1 = z1; 
setup.geom.z2 = z2; 
setup.matl.cp1 = cp1; 
setup.matl.d2 = d2; 
setup.matl.cp2 = cp2; 
setup.matl.cs2 = cs2; 
setup.matl.p1 = p1; 
setup.flaw.b = b; 
setup.flaw.Afunc = flaw_name; 
% calculate received voltage 
[Vf, setup] = TG_PE_MM(setup); 
% extend frequency components to permit 
% taking FFT 
df = f(2)-f(1); 
dt = 1/(1000*df); 
t = s_space(0, 1000*dt, 1000); 
Vfe = [Vf zeros(1,800)]; 
Vfe(1) = Vfe(1)/2; 
vt =2*real(IFourierT(Vfe, dt)); 
plot(t_shift(t,100), c_shift(vt,100)) 
 
 
 
As shown in Chapter 7, it is relatively easy to calculate the system function 
experimentally in a reference experiment, and this function then truly 
represents the effects of all the electrical and electromechanical compo   
nents of the system (pulser/receiver, cabling, transducers) at a specific 
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Fig. 12.12. The voltage received from the fluid-solid interface for the reference 
scattering configuration shown in Fig. 12.10 (a). 

set of instrument settings. It is also easy to incorporate such a measured 
system function into our measurement model. All that is needed is to 
replace the output of the systf function in the previous example with a 
compatible set of measured values of the system function. This can be 
done for the example just discussed by measuring the waves received from 
the front surface of the glass block, as shown in Fig. 12.10(a). Since the 
acoustic/elastic transfer function is known for this configuration, 
deconvolution (with the aid of a Wiener filter) of the frequency 
components of the measured response by the transfer function, as shown in 
Chapter 7, will give us the measured system function. Figure 12.12 shows 
the experimental wave form received by a 5 MHz, 12.7 mm diameter 
planar transducer from the interface as shown in Fig. 12.10 (a). The 1000 
point wave form and its corresponding time axis are stored as MATLAB 
variables ref and t_ref, respectively in the MATLAB MAT-file 

experimentally. The function exp_systf loads the ref and t_ref variables 
into MATLAB (assuming that the sphere_ref file is contained in the 
current MATLAB directory), computes the frequency components of this 
measured response and then deconvolves those components with the 
acoustic/elastic transfer function for this configuration, using the 
MATLAB function Wiener_filter defined in Appendix C with a noise 
constant defined by the parameter setup.system.en. The function then 

the model-based systf function to calculate the system function 
sphere_ref.mat.  The MATLAB function exp_systf is used in place of 
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returns the measured system function. The listing of exp_systf is given in 
Code Listing 12.12. 
 
Code Listing 12.12.  A function for calculating the system function from an 
experimentally measured wave form in the reference scattering configuration of 
Fig. 12.10 (a). 
 
 
function s = exp_systf(setup) 
% EXP_SYSTF generates the system function from the 
% measured voltage received by a circular, planar or focused  
% transducer from the planar front surface of a 
% solid. It is assumed that the solid is the same as the one 
% in the flaw measurement where this system function is to be used 
% as is the rest of the measurement setup except that the fluid 
% path length can be different from the one used in a flaw measurement. 
% This function assumes that there are 1000 sampled 
% values in the reference wave form and time axis 
% and the sampling frequency is 100MHz 
filename =setup.system.ref_file; 
load(filename) % load reference wave form (in the variable ref) 
% and the time axis values (in the variable  t_ref) from a MAT-file 
 
dt = t_ref(2)-t_ref(1); 
% calculate Fourier Transform 
V =FourierT(ref, dt); 
%generate frequency axis 
fs = s_space(0, 1/dt, 1000); 
 
% get setup frequency values and check for consistency 
f = setup.f; 
df= f(2) - f(1); 
dfs =fs(2) - fs(1); 
fsize=size(f); 
numf = fsize(2); 
if df > (dfs + .001) | df < (dfs - .001) 
    error('frequency spacing mismatch of setup and exp values') 
end 
if f(end) > (fs(end) +dfs)/2 
    error('max frequency in setup exceeds Nyquist') 
end 
% keep number of measured voltage frequency components 
% compatible with that in setup 
Vc=V(1:numf);  
% get remaining setup parameters 
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z1r =setup.system.z1r; 
en =setup.system.en; 
d1 =setup.matl.d1; 
cp1 = setup.matl.cp1; 
d2 = setup.matl.d2; 
cp2 = setup.matl.cp2; 
cs2 = setup.matl.cs2; 
a = setup.trans.d/2; 
p1 =setup.matl.p1; 
alphac =p1(3); % frequency squared attenuation coefficient 
fl = setup.trans.fl; 
 
% if transducer is focused, z1r must be the same as the focal length 
if fl ~= inf 
    if z1r > fl +.01  | z1r < fl - .01 
        warning(' reference water path is not the focal length, using focal length') 
        z1r = fl; 
    end 
end 
 
% calculate wave number , reflection coefficient of fluid-solid interface 
% and argument for acoustic/elastic transfer function 
ka =2000.*pi.*f.*a./cp1; 
R12 = (cp2*d2 - cp1*d1)/(cp2*d2 + cp1*d1); 
arg = (a/z1r)*ka; 
alpha = alphac*f.^2; 
% calculate acoustic-elastic transfer function, leave out propagation phase 
 
ta = 2*R12*exp(-2*alpha.*z1r).*(1 -exp(i*arg/2).*(BesselJ(0, arg/2)... 
      -i*BesselJ(1, arg/2))); 
if fl ~= inf 
    ta = -conj(ta); 
end 
 
% deconvolve measured voltage frequency components with transfer function 
% to get system function 
s = Wiener_filter(Vc, ta, en); 
 
 
 
To use exp_systf for our spherical void example in place of the function 
systf which generates a model-based system function, we need only have 
the appropriate setup parameters, which can be obtained by first running 
the script TG_sphere_example1, and then updating setup.sysf to indicate 
we now  are going to  use an  experimentally determined  system  function.  
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Fig. 12.13. The magnitude of the frequency components of the voltage received 
from an on-axis spherical void for the configuration shown in Fig. 12.10 (b) as 
predicted by the Thompson-Gray measurement model using an experimentally 
determined system function and the Kirchhoff approximation for the far-field 
scattering of the void. 

The Wiener filter constant, en, is set at a default value of 0.01 in the setup 
parameters but it can be changed, if necessary. We also need to specify the 
MAT-file that contains the reference wave form obtained from the configu-
ration in Fig. 12.10 (a). Note that the distance z1r has already been defined 
appropriately. 
 
>> clear 
>> TG_sphere_example1 
>> setup.system.sysf = 'exp_systf’; 
>> setup.system.ref_file = ‘sphere.ref’; 
 
Then we can run the measurement model and plot the output: 
 
>> [Vout, setup] = TG_PE_MM(setup); 
>> plot(f, abs(Vout)) 
 
The results are shown in Fig. 12.13. If we now pad these frequency domain 
values with zeros to extend the frequency range to 100 MHz and do an 
inverse FFT, the time domain received wave form can be plotted: 
 
>> Ve =[Vout, zeros(1, 800)]; 
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>> Ve(1) = Ve(1)/2 ; 
>> vt = 2*real(IFourierT(Ve, dt)); 
>> plot(t, vt) 
 
The results are shown in Fig. 12.14. All of the MATLAB commands needed 
to generate this waveform are in the MATLAB script TG_sphere_example2 
(see Code Listing 12.13). The intermediate frequency plot of Fig. 12.13, 
however, is omitted in that script.  
 
Code Listing 12.13.  A MATLAB script for calculating the A-scan wave form for 
a spherical void using an experimentally determined system function. 
 
 
% script TG_sphere_example2 
% calculates the waveform for a spherical void 
% using an experimentally determined system function 
clear 
% run TG_sphere_example1 script to get system parameters 
TG_sphere_example1 
%specify use of experimentally determined system function 
%and reference waveform 
setup.system.sysf='exp_systf'; 
setup.system.ref_file ='sphere_ref'; 
%run measurement model 
[Vout, setup] = TG_PE_MM(setup); 
% plot(f, abs(Vout))  intermediate plot omitted 
% pad frequency domain amplitude with zeros 
Ve= [ Vout, zeros(1,800)]; 
Ve(1) = Ve(1)/2;   % Now, compute wave form and plot 
vt =2*real(IFourierT(Ve, dt)); 
plot(t, vt) 
 
 
 
For comparison, the actual measured wave form from the flaw can also be 
plotted. This wave form, vexp, and its corresponding time axis, t_exp, are 
contained in the file sphere_flaw.mat. We can load that file and display 
that flaw signal on the same plot as the one just obtained:  
 
>> hold on 
>> load 'sphere_flaw' 
>> plot(t, vexp, '--') 
>> hold off 
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Fig. 12.14. The voltage received from an on-axis spherical void for the configu-
ration shown in Fig. 12.10 (b) as predicted by the Thompson-Gray measurement 
model using an experimentally determined system function and the Kirchhoff app-
roximation for the far-field scattering of the void (solid line) and the experimen-
tally measured flaw signal (dashed line). 

We can see in Fig. 12.14 that the two waveforms are close in amplitude 
and general shape. No attempt was made to match the time of arrivals of 
the two signals. In fact, in the calculation of these signals the phase terms 
that represent the time delays present due to propagation in the fluid and 
solid media were omitted. The measurement model predicts a slightly 
larger response than the measured response and there are some very small 
late time differences between the two signals. Fig. 12.14 shows that the 
Thompson-Gray measurement model coupled with the Kirchhoff 
approximation does a remarkably good job of predicting the flaw signal in 
this example even though the non-dimensional wave number, 2pk b , of the 
flaw for P-waves based on the transducer center frequency of 5 MHz is 
only 2 1.8pk b = . Formally the Kirchhoff approximation is a high frequency 
approximation where we must have 2 1pk b >>  but we see this 
approximation still works well at much lower frequencies (or smaller flaw 
sizes) where 2pk b  is not large. This is consistent with our discussion of 
that approximation in Chapter 10. However, as shown in Chapter 10, if 

2pk b <1 then the Kirchhoff approximation generally will not be accurate. 
Also  note  that  even  the  completely  modeled  signal  of  Fig. 12.11,  has 
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Fig. 12.15. The magnitude of the measured system function for the configuration 
of Fig 12.10 (a) (solid line) and the magnitude of the system function synthesized 
using the function systf (dashed line). 

approximately the same amplitude as the experimental signal although the 
waveform details are different. Those differences in waveform shape come 
primarily from the fact that a purely real model-based system function was 
used in calculating the response in Fig. 12.11 while the complex-valued 
measured system function was used in Fig. 12.14. There are also some 
differences in the amplitudes and widths of the two different system 
functions used in Figs. 12.11 and 12.14. Figure 12.15 compares the magni-
tudes of these two system functions versus frequency. It can be seen that 
although the transducer being used is listed as a 5 MHz transducer, the 
system function determined experimentally peaks at a slightly lower value. 
For the modeled system function, we centered the Gaussian function at the 
5 MHz value. Likely we could improve our predictions of the wave form 
obtained using a model-based system function by making the amplitude 
and bandwidth of that function agree more closely with the experimentally 
determined system function. 
 In Chapter 10 we gave the separations of variables solution for the 
pulse echo P-wave response of a spherical void. Those expressions have 
been encoded in the MATLAB function A_void_Psep (see Appendix G for 
a code listing). We can simply replace the Kirchhoff-based function A_void 
in the setup structure by this function: 
 
>> setup.flaw.Afunc ='A_void_Psep'; 
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and then rerun the measurement model and compare with the experimentally 
measured sphere response: 
 
>> [Vout, setup] = TG_PE_MM(setup); 
>> Ve = [Vout, zeros(1,800)]; 
>> Ve(1) = Ve(1)/2 ; 
>> vt = 2*real(IFourierT(Ve, dt)); 
>> plot(t, vt) 
>> hold on 
>> load 'sphere_flaw' 
>> plot(t, vexp, '--') 
>> hold off 
 
The results are shown in Fig. 12.16. From that figure we see that the 
amplitude of the modeled flaw signal is now very close to that of the 
experimental signal. 
 We can also examine the sphere with a spherically focused probe. 
The script TG_sphere_example3 given in Code Listing 12.14 again uses 
the TG_sphere_example1 script to set up most of the parameters. The 
transducer used is a 12.46 mm diameter, 172.9 mm focal length probe, so 
those parameters in setup are changed. These transducer parameters are 
both measured effective values, found by the methods discussed in 
Chapter 7. In this case the water path length for the flaw measurement is 
again 50.8 mm so that value need not be changed but the reference 
experiment to determine the system function must be carried out with the 
spherically focused transducer at a water path equal to the focal length to 
use the transfer function found in Chapter 8. Thus, the setup.system.z1r 
must also be changed. The function exp_systf again can calculate the 
system function for this focused probe. In this case the reference waveform 
is contained in the MAT-file 'sphere_ref_foc'. For this example we will 
also use the Kirchhoff approximation to determine the scattering amplitude 
of the void, so that we set setup.flaw.Afunc = ‘A_void’. With these updates 
made to setup, the measurement model can be run and the waveform 
synthesized as before. The experimentally measured response of the void 
to this focused probe is contained in the .mat file ‘sphere_flaw_foc’ in the 
variable vexp so if we load this file and then plot it alongside our modeled 
response we obtain the results shown in Fig. 12.17. It can be seen from that 
figure that the Kirchhoff approximation does a very good job of repro-
ducing the measured flaw signal.  
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Fig. 12.16. The voltage received from an on-axis spherical void for the configu  
ration shown in Fig. 12.10 (b) as predicted by the Thompson-Gray measurement 
model using an experimentally determined system function and the method of 
separation of variables for the far-field scattering of the void (solid line). The 
experimentally measured flaw signal is shown for comparison (dashed line). 

 
Fig. 12.17. The voltage received from an on-axis spherical void for the configu-
ration shown in Fig. 12.10 (b) using a spherically focused probe. The wave form 
was predicted by the Thompson-Gray measurement model using an experimentally 
determined system function and the Kirchhoff approximation for the far-field 
scattering of the void (solid line). The experimentally measured flaw signal is 
shown for comparison (dashed line). 
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Code Listing  12.14.  A script for calculating the response of a spherical void in 
the configuration shown in Fig. 12.10 (b) where a spherically focused probe is 
used. The predicted response uses an experimentally determined system function 
and a flaw response given by the Kirchhoff approximation which is then plotted 
and compared to an experimentally measured signal. 
 
 
% script TG_sphere_example3 
% calculates the waveform for a spherical void 
% using an experimentally determined system function; focused probe case 
clear 
% run TG_sphere_example1 script to get most system parameters 
TG_sphere_example1 
%update setup 
setup.trans.d = 12.46; 
setup.trans.fl =172.9; 
setup.system.z1r =172.9; 
setup.flaw.Afunc = 'A_void'; 
%specify use of experimentally determined system function 
%and reference waveform 
setup.system.sysf='exp_systf'; 
setup.system.ref_file ='sphere_ref_foc'; 
%run measurement model 
[Vout, setup] = TG_PE_MM(setup); 
% plot(f, abs(Vout))  intermediate plot omitted 
% pad frequency domain amplitude with zeros 
Ve= [ Vout, zeros(1,800)]; 
Ve(1) = Ve(1)/2 ;   %Now, compute wave form and plot 
vt =2*real(IFourierT(Ve, dt)); 
plot(t, c_shift(vt, 600)) 
load 'sphere_flaw_foc' 
hold on 
plot(t, vexp,'--') 
hold off 
 
 
 
 

12.9 A Large Flaw Measurement Model 

We could also use the Thompson-Gray measurement model to predict the 
response of other  scatterers  in the configuration of  Fig. 12.10 (b) such as  
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Fig. 12.18. A scattering configuration where (a) a flat-bottom hole or (b) a flat 
circular  crack is interrogated by a planar transducer at normal incidence through a 
fluid-solid interface. In both cases the center of the scatterer is located on the 
central axis of the transducer. 

the flat-bottom hole shown in Fig. 12.18 (a) or the flat circular crack shown 
in Fig. 12.18 (b). However, both of these scatterers are very “specular”, i.e. 
they reflect much of the incident waves directly back to the transducer 
from their flat surfaces. As a consequence, the assumption of the Thompson-
Gray measurement model that the wave field of the transducer beam is 
nearly constant over the flaw surface leads to significant errors if the sizes 
of the flat-bottom hole or crack being considered are not very small. In 
contrast, it has been found that the spherical void is much more tolerant to 
the small flaw assumption and the Thompson-Gray measurement model 
works well even for large spherical flaws. To account for beam variations 
we will use the more general measurement model of  Eq. (12.1) coupled 
with a Kirchhoff approximation model for the scattering of a crack. In the 
Kirchhoff approximation this same flaw scattering model is appropriate 
also for the flat-bottom hole since the sides of the hole do not contribute 
anything in that approximation when the incident waves are at normal 
incidence to the circular, flat end of the hole. Since we are considering a 
pulse-echo setup for P-waves we have ( ) ( ) ( )1 2ˆ ˆ ˆ ,V V V ω= = x  in Eq. (12.1) 
and from the Kirchhoff approximation and the fact that we have a stress-
free surface, we find (see Eq. (10.12)) 
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2
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where we have used the fact that on the flat surface S  1p
i ⋅ = −d n  and 

0p
i ⋅ =d x .Then Eq. (12.1) becomes 
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Note that because of the symmetry of the incident field in the confi-
guration of Fig. 12.18 we have ( ) ( )ˆ ˆ, ,V V rω ω=x , where r is the radial 
distance from the center of the scatterer and the transducer axis. Thus, in 
this case we have 

( ) ( ) ( )
22 2

2;
2 0

4 ˆ , .
r b

p
R pT a

p r r

c
V s ik V r rdr

ik Z
πρ

ω ω ω
=

=

⎡ ⎤
⎡ ⎤= ⎢ ⎥ ⎣ ⎦−⎢ ⎥⎣ ⎦
∫  (12.32)

If we break the total integration into a series segments from  mr r=  to 1mr r += , 
with ( ) ( )1 / 1mr m b M= − −  ( )1,2,... 1m M= − then we can approximate the 
velocity field as constants over the centroids of those segments given by 
( )ˆ ,mV r ω , where ( )1 / 2m m mr r r+= +  is an average radius. Each of these 

segments represent a circular  ring except the first one which is a complete 
circular area of radius ( )/ 1b M − since 1 0r = . For that circular segment we 
let 1 0r =  so that fields over that segment are calculated on the transducer 
axis, which is consistent with what we would do normally for a very small 
on-axis crack or flat-bottom hole.  Equation (12.32) becomes 
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In the Kirchhoff approximation the normal incidence pulse-echo P-wave 
far-field scattering amplitude of a flat crack of radius  mr is just (see 
Eq. (10.38)): 

( )
2

2;
2

p mp p
m i i

ik r
A − =e e  (12.34)

so that we can write Eq. (12.33) as: 
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ment model terms for the scattering of a circular crack. Thus, we can use 
the TG_PE_MM function in conjunction with A_crack to model this case.  
 The MATLAB script FBH_example1 (Code Listing 12.15) imple-
ments Eq. (12.35) for a #8 flat-bottom hole in a steel block. The reference 
wave form for calculating the system function resides in the file FBH_ref.mat  
and the experimental flaw response is in the file FBH_flaw_n8.mat. The 
script calculates the FBH response and then plots both it and the experi-
mental signal. The results are shown in Fig. 12.19. 
 
 

 
Fig. 12.19.  The voltage received from an on-axis #8 flat-bottom hole for the 
configuration shown in Fig. 12.18 (a) as predicted by a measurement model that 
accounts for field variations over the end of the flat-bottom hole and uses an 
experimentally determined system function and the Kirchhoff approximation for 
the far-field scattering of the hole (solid line). The experimentally measured flat-
bottom hole signal is shown for comparison (dashed line). 

 
 

Comparing Eq. (12.35) and Eq. (12.6), we see that we can obtain the voltage 
by merely combining appropriately a number of Thompson-Gray  measure-
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Code Listing 12.15. A script for calculating the response of a #8 flat-bottom hole, 
taking into account the variations of the incident transducer beam over the bottom 
of the hole. 
 
 
% FBH_example1 script 
% This script calculates the pulse-echo P-wave response of an on-axis  
% #8 flat-bottom hole interrogated by a 5 MHz planar probe through a  
% fluid-solid interface at normal incidence 
 
clear 
setup = setup_maker; 
% setup parameters that need to be specified 
% for this example 
f =s_space(0, 20, 200); 
cp1 = 1484.; 
d2 = 7.86; 
cp2 = 5940.; 
cs2 = 3230.; 
z1 = 50.8; 
z2 = 25.4; 
amp =0.12; 
bw = 3.; 
z1r =50.8; 
p1 = [ 0 0 0.02479E-03  0 0]; 
b =1.5875;   % number eight FBH 
flaw_name = 'A_crack'; 
sysfunc ='exp_systf'; 
reffile='FBH_ref'; 
setup.f =f; 
setup.system.amp = amp; 
setup.system.bw = bw; 
setup.system.z1r =z1r; 
setup.system.sysf = sysfunc; 
setup.system.ref_file = reffile; 
setup.geom.z1 = z1; 
setup.geom.z2 = z2; 
setup.matl.cp1 = cp1; 
setup.matl.d2 = d2; 
setup.matl.cp2 = cp2; 
setup.matl.cs2 = cs2; 
setup.matl.p1 = p1; 
setup.flaw.b = b; 
setup.flaw.Afunc = flaw_name; 
 
% break up hole end into rings 
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nR= 10;  % use 9 rings (10 points) 
rm = linspace(0, b, nR);    %ring edges 
rmu = rm(2:nR); %upper edges 
rml =rm(1:nR-1); %lower edges 
rc =(rmu-rml)/2 + rml; %ring centroids 
rc(1) = 0; %make first centroid at origin  
 
Vf = zeros(size(f)); 
 
% calculate received voltage 
 
for nd = 1:nR-1 
    setup.geom.x2 = rc(nd); 
    setup.flaw.b =rm(nd); 
    [Vf1, setup] = TG_PE_MM(setup); 
    setup.flaw.b = rm(nd+1); 
    [Vf2, setup] = TG_PE_MM(setup); 
    Vf = (Vf2-Vf1) +Vf; 
end 
 
% extend frequency components to permit 
% taking FFT 
 
df = f(2)-f(1); 
dt = 1/(1000*df); 
t = s_space(0, 1000*dt, 1000); 
Vfe = [Vf zeros(1,800)]; 
Vfe(1) = Vfe(1)/2; 
vt =2*real(IFourierT(Vfe, dt)); 
vs =c_shift(vt, 700); 
plot(t(100:500), vs(100:500)) 
%plot(t_shift(t,700), c_shift(vt,700)) 
hold on 
load 'FBH_flaw'; 
plot(t(100:500), vexp(250:650), '--') 
hold off 
 

12.10 A Measurement Model for Cylindrical Reflectors 

The third measurement model discussed previously was for treating the 
pulse-echo response of cylindrical reflectors such as a side-drilled hole 
(SDH) where the beam variations can be neglected over the cross-section 
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of the scatterer. In terms of the geometry parameters defined in Fig. 12.1, 
this measurement model (see Eq. (12.5)) is: 
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This measurement model is similar to the Thompson-Gray measurement 
model (Eq. (12.6)) but now we must replace the square of the incident 
velocity field in that model (for pulse-echo) by the integrated velocity 
squared term in Eq. (12.36) and the 3-D scattering amplitude in the  
 
Code Listing 12.16. A MATLAB function for calculating the normalized far-field 
scattering amplitude of a side-drilled hole in pulse-echo using the Kirchhoff 
approximation. 
 
 
function A =A_SDH(setup) 
% A_SDH calculates the pulse-echo 3-D normalized far-field scattering  
% amplitude,A/L, of a side-drilled hole in the Kirchhoff approximation 
% using the frequency f in setup.f, the radius b in  setup.flaw.b, 
% and the wave speed for the wave type in setup.wave.c2. 
% The calling sequence is A = A_SDH(setup). The scattering 
% amplitude, A, (in mm) is returned. In the calculation of the 
% Struve function, an integration routine is used. Thus, the 
% frequency, f, must be at most a vector to use this function  
% effectively. It is not vectorized for f being a matrix. 
 
f =setup.f; 
b =setup.flaw.b; 
c=setup.wave.c2; 
kb =2000*pi*b.*f./c; 
A =(kb./2).*(besselj(1, 2*kb)-i*struve(2*kb)) +i*kb./pi; 
 
function y = struve(z) 
num = length(z); 
y=zeros(1,num); 
for k = 1:num 
y(k) = quadl(@struve_arg, 0, 1, [ ],[ ], z(k)); 
end 
 
function y = struve_arg(x, z) 
y = (4./pi).*z.*x.^2.*sin(z.*(1-x.^2)).*sqrt(2-x.^2); 
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Thompson-Gray model is now replaced by the normalized 3-D scattering 
amplitude, /A L , of the cylindrical scatterer, where L is the scatterer length. 
In the Kirchhoff approximation this normalized scattering amplitude was 
previously given by Eq. (10.53) for a SDH and has been coded in the 
MATLAB function A_SDH (Code Listing 12.16). 
 The multi-Gaussian beam model defined by the MATLAB 
function MGbeam has been modified so that it returns the integral of the 
square of the velocity field at the center of the SDH as well as an updated 
setup structure. The new MATLAB function is called I_MGbeam (Code-
Listing 12.17). It is assumed that the 2y -coordinate of the flaw is now 
given in setup.geom.y2 as a vector of values and the integral in Eq. (12.36) 
is calculated approximately in I_MGbeam as a simple sum: 

( )( ) ( )( )2 2

2 2
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where V̂ is the ideal velocity field (no attenuation) calculated by the multi-
Gaussian beam model. In most cases the length of the hole extends the full 
width of a test block so that the hole length may be larger than the width of 
the incident beam. In that case, we can treat the SDH as infinitely long and 
simply sum over 2y -values where the fields are significant. 
 
Code Listing 12.17. A MATLAB function for returning the integrated square of 
the velocity field for use in a measurement model for cylindrical reflectors where 
beam variations along the length of the reflector must be considered. 
 
 
function [vi,setup ]=I_MGbeam(setup) 
 
% get setup parameters 
fin = setup.f;   %frequency or frequencies (MHz) 
type1 = setup.type1;          % wave type in medium one 
type2 = setup.type2;  % wave type in medium two 
     
a = setup.trans.d/2;  % transducer radius (mm) 
Fl = setup.trans.fl;  % transducer focal length (mm)  
 
z1 = setup.geom.z1;  % water path length (mm) 
z2 = setup.geom.z2;           % path length in solid (mm) 
x2 =setup.geom.x2;        % distance (mm) from ray axis in POI  
yin = setup.geom.y2;  % distance (mm) perpendicular to the POI 
Rx = setup.geom.R1;  % interface radius of curvature (mm) in POI 
Ry =setup.geom.R2;            % interface radius of curvature (mm) out of POI 
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iang = setup.geom.i_ang;  % incident angle (deg) 
 
d1 = setup.matl.d1;  % density (fluid) 
d2 =setup.matl.d2;  % density (solid) 
cp1 = setup.matl.cp1;  % compressional wave speed -fluid  (m/sec) 
cp2 = setup.matl.cp2;  % compressional wave speed -solid (m/sec) 
cs2 = setup.matl.cs2;  % shear wave speed -solid (m/sec) 
 
% form frequency, y2-values needed for integration into arrays 
[f,y2]=meshgrid(fin, yin); 
% update setup with these values temporarily (need for init_z) 
% setup values will be returned to fin, yin values later 
setup.f =f; 
setup.geom.y2 = y2; 
 
% define y -increment 
dy = yin(2) - yin(1); 
 
 
[A, B] = gauss_c15; % Wen and Breazeale coefficients (15) 
 
% update setup.wave wave speeds 
if strcmp(type1, 'p') 
    setup.wave.c1 =cp1; 
elseif strcmp(type1, 's') 
    setup.wave.c1 = cs1; 
else 
    error('wrong wave type (must be p or s) ') 
end 
 
if strcmp(type2, 'p') 
    setup.wave.c2 =cp2; 
elseif strcmp(type2, 's') 
    setup.wave.c2 = cs2; 
else 
    error('wrong wave type (must be p or s)') 
end 
% calculate transmission coefficient, update setup 
setup.wave.T12 = fluid_solid(setup);  
 
% wave speeds and transmission coefficient for the beam model 
c1 =setup.wave.c1; 
c2 =setup.wave.c2;           % wave speed for wave type2 
T = setup.wave.T12;         % transmission coefficient 
 
% parameters appearing in beam model 
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cosi = cos(pi*iang/180);  % cosine of incident angle 
sinr = (c2/c1)*sin(pi*iang/180); % sine of refracted angle from Snell's law 
if sinr >= 1       
   error('Beyond the Critical angle') % no transmitted wave of given wave type 
else 
   cosr = sqrt( 1 - sinr^2); 
end  
 
   h11 = 1/Rx;  %curvature 
   h22 = 1/Ry;  %curvature 

k1 = 2*pi*1000*f./c1;    % wave number in fluid 
 
%initialize predicted velocity with zeros of a size 
% compatible with largest array in f, z1, z2, x2, y2 setup parameters 
v = init_z(setup); 
% return to original frequency, fin, and distance, yin, values in setup 
setup.f = fin; 
setup.geom.y2 =yin; 
 
%multi-Gaussian beam model 
 
for j = 1:15   % form up multi-Gaussian beam model 
 
 b =B(j) + i*zr./Fl;  % modify coefficients for focused probe 
    % Fl = inf for planar probe  
     
q = z1 - i*zr./b; 
K = q.*(cosi -(c1/c2)*cosr); 
M1 = (cosi^2 +K.*h11)./cosr^2; 
M2 =1 + K.*h22; 
ZR1 = q./M1; 
ZR2 =q./M2; 
m11 = 1./(ZR1 +(c2/c1).*z2); 
m22 = 1./(ZR2 +(c2/c1).*z2);  
   t1 = A(j)./(1 + (i.*b./zr).*z1); 
   t2 = t1.*T.*sqrt(ZR1).*sqrt(ZR2).*sqrt(m11).*sqrt(m22); 
   v = v + t2.*exp(i.*(k1./2).*(m11.*(x2.^2) + m22.*(y2.^2))); 
 
end 
% sum over y-values squared times dy to integrate 
vs =v.^2; 
vi=sum(vs.*dy, 1); 
 
 
 

zr = eps*(f == 0) + 1000*pi*(a^2)*f./c1;                    % “Rayleigh” distance  
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Fig. 12.20. (a) The reference scattering configuration for determining the system 
function and (b) the setup for measuring the pulse-echo response of a side-drilled 
hole. 

 
Fig. 12.21. The output voltage simulated for the pulse-echo P-wave response of a 
1 mm side-drilled hole in the configuration shown in Fig. 12.20 (b) (solid line) and 
the corresponding experimentally measured response (dashed line). 

The MATLAB function SDH_PE_MM (Code Lisitng 12.18) uses 
I_MGbeam and A_SDH to generate the system output voltage. The 
MATLAB script SDH_example1(Code Listing 12.19) uses SDH_PE_MM 
to simulate the response of a one mm diameter SDH in an aluminum 
sample in a configuration shown in Fig. 12.20 (b). Again, the system 
function is determined experimentally from a measured front-surface 
reflection as shown in Fig. 12.20 (a). The integration over the length of the 



384      Ultrasonic Measurement Modeling with MATLAB 

hole here is taken from −50 mm to +50 mm based on an evaluation of the 
incident fields on the SDH for this problem (that evaluation is not shown 
here explicitly but can be easily done with the MGbeam function). For 
other SDH problems the limits of integration will have to be determined in 
this same way on a case by case basis. The predicted voltage using the 
MATLAB script SDH_example1 is shown in Fig. 12.21 along with the 
corresponding experimentally observed signal. Again, the Kirchhoff approxi-
mation does a very good job of representing the measured signal. 
 
Code Listing 12.18. A MATLAB function that computes the output voltage for a 
cylindrical reflector using the measurement model of  Eq. (12.21). 
 
 
function [Vf, setup] =SDH_PE_MM(setup) 
% SDH_PE_MM generates the frequency components of the  
% output voltage, Vf, of an ultrasonic pulse-echo immersion 
% measurement system generated by a side-drilled hole.  
% The function returns Vf  as well as an updated setup structure 
% The calling sequence is [Vf, setup] =SDH_PE_MM(setup); 
 
% First, compute the integrated beam velocity squared term  
% and update the setup structure. This does not include  
% attenuation  
[vs, setup] = I_MGbeam(setup); 
 
%get the setup parameters  needed for the constant term 
%in the measurement model 
f = setup.f; 
r= setup.trans.d/2;    % transducer radius 
d1 =setup.matl.d1; 
d2 =setup.matl.d2; 
c1 = setup.wave.c1; 
c2 = setup.wave.c2; 
 
%compute wave number in medium two and  
%the constant term in the measurement model 
 
k2 = (2000.*pi.*f)./c2; 
k2 =k2 + eps*( k2 == 0);  % prevent division by zero 
K= (4.*d2.*c2)./(-i.*k2.*r^2.*d1.*c1); 
 
% check to see if a model-based or experimentally determined system 
% function is to be used 
if strcmp(setup.system.sysf, 'systf') 
    sys = systf(setup); 
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else 
    sys =feval(setup.system.sysf, setup); 
end 
 
% find flaw type to be used 
if strcmp( setup.flaw.Afunc, 'empty') 
    error('flaw function not specified in setup') 
else 
    A = feval(setup.flaw.Afunc, setup); 
end 
 
%compute output voltage, Vf, (volts/MHz) 
Vf = sys.*(vs).*(attenuate(setup)).^2.*A.*K; 
 
 
 
 
Code Listing 12.19. A MATLAB script for calculating the pulse-echo P-wave 
response of a 1 mm diameter side-drilled hole in the configuration of Fig. 12.20 
(b) using the Kirchhoff approximation to calculate the scattering of the side-drilled 
hole and an experimentally determined system function found from the reference 
configuration of Fig. 12.20 (a). The predicted response is compared to the experi-
mentally observed signal. 
 
 
%SDH_example1 script 
% This script calculates the pulse-echo P-wave response of an on-axis  
% 1 mm diam side-drilled hole interrogated by a 5 MHz planar probe through a  
% fluid-solid interface at normal incidence 
clear 
setup = setup_maker; 
% setup parameters that need to be specified 
% for this example 
f =s_space(0, 20, 200); 
y2 =linspace(-50, 50, 500); 
cp1 = 1484.; 
d2 = 2.75; 
cp2 = 6416.; 
cs2 = 3163.; 
z1 = 50.8; 
z2 = 25.4; 
amp =0.12; 
bw = 3.; 
z1r =50.8; 
p1 = [ 0 0 0.02479E-03  0 0]; 
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b =0.5;   % 0.5 mm radius 
flaw_name = 'A_SDH'; 
sysfunc ='exp_systf'; 
reffile='SDH_ref'; 
 
% put parameters in setup 
 
setup.f =f; 
setup.system.amp = amp; 
setup.system.bw = bw; 
setup.system.z1r =z1r; 
setup.system.sysf = sysfunc; 
setup.system.ref_file = reffile; 
setup.geom.z1 = z1; 
setup.geom.z2 = z2; 
setup.geom.y2 = y2; 
setup.matl.cp1 = cp1; 
setup.matl.d2 = d2; 
setup.matl.cp2 = cp2; 
setup.matl.cs2 = cs2; 
setup.matl.p1 = p1; 
setup.flaw.b = b; 
setup.flaw.Afunc = flaw_name; 
   
[Vf, setup] = SDH_PE_MM(setup); 
 
% extend frequency components to permit 
% taking FFT 
df = f(2)-f(1); 
dt = 1/(1000*df); 
t = s_space(0, 1000*dt, 1000); 
Vfe = [Vf zeros(1,800)]; 
Vfe(1) = Vfe(1)/2; 
vt =2*real(IFourierT(Vfe, dt)); 
vs =c_shift(vt, 700); 
plot(t, vs) 
hold on 
load 'SDH_flaw_1'; 
plot(t, vexp, '--') 
hold off 
 
 
 
 



12.11 References      387 

12.11 References 

12.1 Lopez-Sanchez A, Kim HJ, Schmerr LW, Gray TA (2006) Modeling the 
response of ultrasonic reference reflectors. Research in NDE 17: 49-70  

12.2 Song SJ, Schmerr LW, Thompson RB (2006) Ultrasonic benchmarking study: 

Melville, NY, pp 1844-1853 

overview up to year 2005. In: Thompson DO, Chimenti DE (eds) Review of 
progress in quantitative nondestructive evaluation. American Institute of Physics, 




