
A Fourier Transforms and the Delta Function 

Ultrasonic NDE involves the propagation of short, transient pulses. A 
pulser, for example, generates voltage pulses that drive an ultrasonic trans-
ducer. That transducer transforms the electrical pulses into mechanical 
pulses that travel as waves and are converted back into electrical pulses at 
the receiving transducer. The received electrical pulses are then often 
displayed on an oscilloscope as a voltage versus time signal. In order to 
model ultrasonic systems ultimately we must be able to describe such 
transient behavior. If we directly simulate these time varying signals this is 
referred to as modeling in the time domain. However, it is often more 
convenient to describe the ultrasonic system and its components in terms 
of their frequency domain response, which is obtained by applying the 
Fourier transform to the time domain signals. It is always possible to 
recover the time domain signal from its Fourier transform through an 
inverse Fourier transform, so that working in the frequency domain does 
not imply a loss of information. In this Appendix we will describe some of 
the basic properties of Fourier and inverse Fourier transforms and we will 
show how these transforms can be implemented numerically with Fast 
Fourier Transform (FFT) algorithms. We will also introduce the delta 
function and its Fourier transform since that function plays a key role in 
modeling linear systems, as shown in Appendix C. 

A.1 The Fourier Transform and Its Inverse 

Consider a pulse, ( )v t , a signal that is a function  of the time, t. The 
Fourier transform of ( )v t , ( )V f , is given by [A.1], [A.3], 

( ) ( ) ( )exp 2V f v t i f t dtπ
+∞

−∞

= ∫ . (A.1)

The variable f is the frequency.  Typically in ultrasonic NDE problems f is 
given in MHz (millions of cycles/sec), where 1 cycle/sec = 1 Hz, and the  
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corresponding time, t, is given in microseconds. Although we integrate 
over all times in Eq. (A.1), most ultrasonic pulses are non-zero only over a 
finite time interval. The inverse Fourier transform, which allows us to 
obtain ( )v t , is 

( ) ( ) ( )exp 2v t V f i f t dfπ
+∞

−∞

= −∫ . (A.2)

Equation (A.2) shows that in order to recover ( )v t  one must integrate over 
both negative and positive frequencies. If the time domain function is real, 
however, it can be shown that its Fourier transform satisfies 
( ) ( )*V f V f− = , where ( )*  denotes the complex conjugate. Thus, the 

negative frequency components can be obtained from the positive 
components and in this sense they are redundant. Later, we will show how 
to recover the time domain signal, ( )v t , from only the positive frequency 
components.  

 There are other definitions of the Fourier transform and its inverse 
that are used in the literature so that one must be careful when comparing 
results, using Eqs. (A.1) and (A.2), to similar results from other authors. 
We will use the definitions of Eqs. (A.1) and (A.2) exclusively in this 
work, or their equivalent definitions given by 

( ) ( ) ( )

( ) ( ) ( )

exp

1 exp
2

V v t i t dt

v t V i t d

ω ω

ω ω ω
π

+∞

−∞

+∞

−∞

=

= −

∫

∫
 (A.3)

in terms of the circular frequency, ω , as measured in rad/sec, where 
2 fω π= . Since ( )v t  and ( )V f  can be obtained from each other, we can 

write this relationship as ( ) ( )v t V f↔ . In a similar fashion we write the 
corresponding relationships for a time shifted or differentiated signal as: 

( ) ( ) ( )

( )

0 0exp 2

2 .

v t t i f t V f
dv if V f
dt

π

π

− ↔

↔ −
 (A.4)
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Fig. A.1.  (a) An example of a simple “box” time domain function and (b) the 
same function shifted in time. 

For many other relationships see [A.3] or [Fundamentals].   
 As an example of a Fourier transform, consider the simple “box” 

function shown in Fig. A.1 (a). The Fourier transform of this function can 
be obtained analytically as 

( ) ( )

( ) ( )
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∫
 (A.5)

 The magnitude of this complex Fourier transform is shown in Fig. A.2 (a) 
and its phase is given in Fig. A.2 (b). The phase plot shows periodic jumps 
of π radians corresponding to the sign changes at these points of the 

( )0sin f tπ  function. Otherwise the phase of the Fourier transform is a 
linearly increasing function of frequency due to the ( )0exp i f tπ  term in 
Eq. (A.5). If we shift this box function to the left by 0 / 2t , the shifting 
property of the Fourier transform given in Eq. (A.4) shows that for this 
symmetrical function (see Fig. A.1 (b)) we instead obtain a purely real 
Fourier transform given by 

   ( ) ( )0

0

sin oAt ft
V f

ft
π

π
=  
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Fig. A.1 (a) and (b) the phase of this transform. 

As another example of the use of the Fourier transform, consider 
the following time function and its Fourier transform (also called the 
Fourier spectrum of the signal): 

( ) ( )

( ) ( ) ( ){ }
2 2

2 22 2 2 2

cos 2 exp / 4

exp 4 exp 4 .

c

c c

v t f t t A

V f A A f f A f f

π

π π π

⎡ ⎤= −⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − + − +⎣ ⎦ ⎣ ⎦
 (A.6)

 

Fig. A.2.  (a) The magnitude of the Fourier transform of the “box” function of 
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Fig. A.3.  (a) The time domain function in Eq. (A.6) and (b) the Fourier transform 
of Eq. (A.6) for  A = 0.2, cf  = 5 MHz. 

These functions are shown in Fig. A.3 for A = 0.2 and cf  = 5 MHz. The 
time domain function is a transient that has a shape typical of many 
ultrasonic signals. The frequency domain spectrum is a pair of Gaussians 
whose maxima are located at the frequencies cf  and - cf . The constant A 
controls both the amplitude of these Gaussians and their widths. Normally, 
one specifies the characteristics of a frequency domain spectrum as shown 
in Fig. A.4 by a center frequency, cf , defined as the frequency at which the 
maximum frequency domain response occurs, and a width of the spectrum.  
One measure of the width that is commonly used  in  ultrasonic NDE is the  
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Fig. A.4.  Definition of the center frequency, cf , and −6 dB bandwidth, bw, of a 
spectrum. 

−6 dB bandwidth, bw, which is defined in this case as the width of the 
Gaussian when the amplitude drops 6 decibels (dB) below its maximum at 

cf f= , as shown in Fig. A.4. Note that an amplitude ratio / rV V  is defined 
in terms of decibels (dB) as 

( ) 1020log
r r

V VdB
V V

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (A.7)

Since ( )1020log 1/ 2 6.02 dB= − , at −6 dB the amplitude has been reduced 
to a value of approximately one half that of the reference value, where in 
our case the reference value is the maximum at cf f= . The parameter, A, 
can be shown to be related to the –6 dB bandwidth, bw, by the 
relation ( )ln 2 /A bwπ= . Figure A.5 shows the functions in Eq. (A.6) for 
a center frequency cf = 10 MHz and for various choices of the −6 dB 
bandwidth, bw. It can be seen that a narrow bandwidth results in a wide 
pulse with significant ringing in the time domain signal while a wide 
bandwidth generates a very short pulse with little ringing. Ultrasonic 
transducers with a large bandwidth are called wide-band, high resolution 
transducers because the short time domain signals they generate allow one 
to resolve signals that are near  to one another. Ultrasonic transducers  with  
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 Fig. A.5. Wave forms and spectra obtained from Eq. (A.6) for cf  = 10 MHz and 
(from top to bottom) bw = 4, 2, 1 MHz, respectively. Note that the amplitudes of 
the spectra are getting larger and their widths narrower as the bandwidth decreases 
although the amplitudes appear to be decreasing with decreasing bandwidth 
because of the changing vertical scale. 

small bandwidths are called narrow-band, high sensitivity transducers. 
Although they cannot as easily resolve closely separated signals, the longer 
duration pulses they generate normally have more energy than wide-band 
signals and they can therefore penetrate deeper into materials. 

 As a final example of a Fourier transform pair, consider a 1-D 
wave pressure pulse traveling along the positive x-direction in a fluid. 
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Such a pulse has the form ( )/p t x c−  where c is the wave speed. If we 
take the Fourier transform of this traveling wave we find 

( ) ( )

( ) ( ) ( )

( ) ( )

/ exp 2

exp 2 / exp 2

exp 2 / ,

p t x c ift dt

i f x c p u ifu du

P f i f x c

π

π π

π

+∞
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=

=

∫

∫  (A.8)

where ( )P f is the Fourier transform of ( )p t . Note that we could also have 
obtained this result directly by using the shifting property relationship of 
Eq. (A.4). If we put this Fourier transform back into the inverse Fourier 
transform expression, we obtain 

( ) ( ) ( )

( ) ( )

/ exp 2 / 2

1 exp ,
2

p t x c P f ifx c ift df

P ikx i t d

π π

ω ω ω
π

+∞

−∞

+∞

−∞

− = −

= −

∫

∫
 (A.9)

where / 2 /k c f cω π= =  is called the wave number. Equation (A.9) shows 
that we can consider a 1-D pulse as a superposition of terms of the form 

( )expp A ikx i tω= −  which is a harmonic plane wave traveling in the 

( ) / 2ω π . The 
wave number is related to the wavelength,λ , of the wave through the 
relation 2 /k π λ= . To see the meaning of the terms in the exponential 
factor of this harmonic wave, first fix x (i.e. sit at a fixed location in space) 
and watch the wave go by as a function of the time, t. The pressure will go 
through a complete cycle (the exponential will change by 2π radians) in a 
time, pT , (in seconds) called the period of the wave. Thus, over one cycle 
2 2pfTπ π= . This shows that the frequency, f, (in Hz or cycles/sec) is 
just 1/ pf T= . Since ( )( )2 / / secrad cycle f cyclesω π=  we see that ω is 
just the rate at which the argument of the exponential term of the pressure 
is changing in time at a fixed location in units of rad/sec. Now, instead fix 
the time t and consider the pressure changes as a function of x.  Physically, 
this would correspond to taking a “snapshot” of the wave variations at a 

positive x-direction. The amplitude, A, of the plane wave is just pro- 
Pportional to the spectrum of the pressure wave, i.e. A =
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fixed time as a function of the distance, x. Again the pressure will go 
through a complete cycle over a distance, D, when 2 / 2kD Dπ λ π= = so 
that the wave length, λ, is just that distance, measured in units of length/ 
cycle. But ( ) ( )2 / / /k rad cycle length cycleπ λ=  so the wave number is just 
the rate at which the argument of the exponential term of the pressure is 
changing in distance at a fixed time in terms of units of rad/length.  

Equation (A.9) shows that in solving wave propagation and inter-
action problems, we can consider the behavior of harmonic waves and then 
obtain the solution for a pulse by Fourier superposition. We have shown 
this fact here only for 1-D plane waves, but it is also true for other types of 
waves as well. 

A.2 The Discrete Fourier Transform 

In practice, experimental ultrasonic NDE signals are manipulated digitally, 
i.e. the analog (continuous) time domain signals are first sampled and then 
these sampled values are stored digitally for later processing. Thus, it is 
also important to be able to deal with Fourier transforms and their inverses 
in terms of discrete, sampled signal values. This can be done using forms 
similar to Eqs. (A.1) and (A.2) given by the discrete Fourier transform pair 
[A.2]: 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

1

1

exp 2 1 1 / 1,2,...,

1 exp 2 1 1 / 1,2,..., ,

N

n j
j

N

k n
n

V f t v t i j n N n N

v t V f i n k N k N
N t

π

π

=

=

= ∆ ⎡ − − ⎤ =⎣ ⎦

= ⎡− − − ⎤ =⎣ ⎦∆

∑

∑
 (A.10)

where ( ) ( ),k kv t V f  are values of a time domain function and its Fourier 
transform at discrete frequency and time values, respectively, 1k kt t t+∆ = −  
is the sampling time interval, and N is the total number of sampled points. 
As with the Fourier transform and its inverse, the discrete Fourier 
transform pair of Eq. (A.10) may appear in different forms in the literature. 

Eqs. (A.1) and (A.2).  
 While the Fourier transform and its inverse are usually applied to 

non-periodic functions their discrete Fourier transform counterparts in 
Eq. (A.10) are always periodic  functions. For example,  the  first  sampled  

Here, Eq. (A.10) is the discrete transform pairs corresponding directly to 
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Fig. A.6. A sampled periodic time domain function showing the N sampled values 
used in the discrete Fourier transform (dark circles) and other sampled values 
(light circles). The sampling time interval is t∆ , the time maxt  is the time at which 
the transient signal ends, and the time T N t= ∆  is the period. 

value in the time domain, ( )1v t , is normally taken to be the value sampled 
at t = 0. There are then N sampled values from t = 0 to t = (N-1)∆t. The 
sampled value ( ) ( )1Nv t v N t+ = ∆ , however, is the same as the value at time 
t = 0 and subsequent samples ( ) ( )2 3,N Nv t v t+ +  etc. also repeat previous 
values. As Fig. A.6 shows the sampled time function is periodic with 
period T = N∆t . Similarly, in the frequency domain the first sampled 
value, ( )1V f , is the frequency component for f = 0 (the d.c. value) and 
there are then N sampled frequency components from f = 0 to f = (N-1)∆f, 
where ∆f = 1/T. The sampled value ( ) ( )1NV f V N f+ = ∆ , is again the d.c. 
value. The frequency domain function is therefore also periodic with 
period sf = 1/∆t, where sf  is the sampling frequency (see Fig. A.7). In 
Appendix G a MATLAB function s_space is given that generates a 
sampled time or frequency axis with precisely these values needed for 
application of the discrete Fourier transform or its inverse. For example, 
s_space(0, T, N) generates a set of N evenly spaced sampled values going 
from 0 to T - ∆t, where ∆t = T/N is the sample spacing. Note that if we 
used the built-in MATLAB function linspace(0, T, N) we would obtain 
instead a set of N evenly sampled values going from 0 to T with sample 
spacing ∆t = T/(N-1). 
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Fig. A.7.  The magnitude of a sampled periodic frequency domain function 
showing the N sampled values use in the discrete inverse Fourier transform (dark 
circles) and other sampled values (light circles). The frequency sampling interval 
is 1/f T∆ = , the frequency maxf  is the maximum frequency contained in the signal 
and the sampling frequency  1/sf t= ∆  is the period. 

As long as the original time domain signal is shorter than the 
sampling period, T, and the sampling frequency is sufficiently high to 
capture all the significant “wiggles” in the signal it can be seen from 
Fig. A.6 that the N sampled time domain components contained in the 
discrete Fourier transform will capture the entire signal adequately. Note 
that if the time signal has non-zero values before t = 0, those values will 
appear in the upper half of the N time domain samples as shown in Fig. 
A.6. The MATLAB function c_shift (see section G.8 in Appendix G for a 
code listing) can be used to shift the entire time domain function and place 
these negative time values back into their proper position so that the 
function does not appear to be split. Similarly, a MATLAB function t_shift 
given in Appendix G changes the time-axis appropriately. 

In the frequency domain the negative frequency components in the 
discrete Fourier transform are also contained in the upper half of the N 
frequency domain samples as can be seen from Fig. A.7. Since inherently 
the frequency spectrum of a real time domain function must contain both 
negative as well as positive frequency components, Fig. A.7 shows that 
unless the sampling frequency, sf , is at least double maxf , the highest fre-
quency contained in the signal, these periodically repeated functions will 
overlap and we will not recover the original spectrum of the signal. To 
prevent this phenomenon, which is called aliasing, we must therefore 

 
always  choose a  high  enough  sampling  frequency. This  requirement  is 
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embodied in what is called the Nyquist criterion (or the sampling theorem) 
which is [A.1]: 

The sampling frequency, 1/sf t= ∆ , must be at least twice the maximum 
significant frequency, maxf , contained in the waveform being sampled. 

In ultrasonic NDE, the transducers commonly used do not produce signi-
ficant frequencies above about 20 MHz and inspected materials (steel, 
 
Code Listing A.1. The FFT corresponding to Eq.(A.10). 
 
 
function y = FourierT(x, dt) 
% FourierT(x, dt) computes forward FFT of x, with sampling time interval dt 
% FourierT assumes the Fourier transform  is in terms of exp(2*pi*i*f*t) 
% For NDE, frequency components are normally in MHz, dt in microseconds 
% If x is a matrix, the transform is performed on the columns of x  
[nr, nc] = size(x); 
if nr == 1 
N = nc; 
else  
 N = nr; 
end 
y = N*dt*ifft(x);  
 
 

Code Listing A.2. The Inverse FFT corresponding to Eq.(A.10). 
 
 
function y = IFourierT(x, dt) 
% IFourierT(x, dt) computes the inverse FFT of x, for a sampling time interval dt 
% IFourierT assumes the inverse transform is in terms of exp(-2*pi*i*f*t)  
% For NDE, frequency components are normally in MHz, dt in microseconds  
% If x is a matrix, the inverse transform is performed on the columns of x 
[nr,nc] = size(x); 
if nr == 1 
 N = nc; 
else 
 N = nr; 
end 
y =(1/(N*dt))*fft(x); 
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aluminum, etc.) also attenuate ultrasound severely above such frequencies. 
Thus, a frequency of 100 MHz is normally a conservative choice for the 
sampling frequency that will satisfy the Nyquist criterion. This 
corresponds to a sampling time interval 10t∆ = nanoseconds. The number 
of sampling points, N, then determines the total length of the time 
record,T N t= ∆ , being digitized which in turn determines the sampling 
interval in the frequency domain, f∆ , since / 1/ 1/sf f N N t T∆ = = ∆ = . 

efficiently, one uses Fast Fourier Transform (FFT) algorithms, which are 
widely available [A.4]. Numerous books have been written on FFTs if one 
is interested in the details of those algorithms. To perform these discrete 
transforms in MATLAB, we must be aware that the built-in MATLAB 
FFT functions fft and ifft are defined such that the signs are exchanged in 
the exponentials appearing in Eq. (A.10) and the MATLAB functions do 
not include the sampling time constant ∆t  or N appearing in the 
coefficients of Eq. (A.10). Thus, we have defined a new set of MATLAB 
functions, FourierT and IFourierT, to implement the discrete transforms in 
Eq. (A.10). Those functions are defined in Code Listings A.1 and A.2. The 
functions FourierT and IFourierT, like fft and ifft, will perform Fast 
Fourier Transforms and their inverse on either vectors or matrices. If the 
input data is a vector, it can be a column or row vector. If the input data of 
these functions is a matrix, then they will perform the FFTs or inverse 
FFTs on the columns of the matrix. Fast Fourier Transform algorithms are 
often implemented with the number of samples 2mN =  for some integer 
m. In fact some FFT algorithms require the number of samples be a power 
of two. The MATLAB functions fft and ifft do not have this restriction so 
that neither do the functions FourierT and IFourierT. However, these 
functions are also more efficient when the number of samples is a power of 
two.  

If we give the function IFourierT only the positive frequency 
components of a real time domain function, then to recover that real time 
function we need to compute twice the real part of the output of IFourierT 
(which will be complex), This is necessary since if we compute the inverse 
Fourier transform of a function ( )V f  using only the positive frequency 
components we do not obtain the function ( )v t  but instead find the function 

( )v t+  where [Fundamentals]: 

 To implement the discrete Fourier transform pair of Eq. (A.10) 



452      Fourier Transforms and the Delta Function 

 

Fig. A.8. (a) A delta function, and (b) its Fourier transform. 
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∫

∫
 (A.11)

so that one-half of  the original function v is in the real part of ( )v t+  and 
one half of the Hilbert transform [A.3] of v shows up in the imaginary 
part. [Note that if ( ) ( )1 0f

V f V f
=

= is non-zero, which can happen with 
time functions whose average (dc) value is not zero, then one half of that 
value must be associated with the positive frequencies and one half with 
the negative frequencies, i.e. we should compute IFourierT on the positive 
frequencies only after first making the replacement ( ) ( )1 1 / 2V f V f→ ]. 

A.3 The Delta Function 

One function that plays a key role in analyzing linear systems is the delta 
function [A.1]. We can define a  delta function  from a  limit  of  the  “box”  



A.3 The Delta Function      453 

Fig. A.9.  A shifted delta function. 

function shown in Fig. A.1 (a). If we let 0 0t →  but keep the product 
0 1At =  so that the function always contains unit area, then the box 

we will denote symbolically by the delta function ( )tδ . In the same limit 
the Fourier transform of the box function becomes simply unity at all 
frequencies, as shown in Fig. A.8 (b) so that we have the Fourier transform 
pair ( ) 1tδ ↔ . Thus, a delta function generates all frequencies equally. It 
is this property that makes a delta function an ideal function to serve as a 
system input since the output of a system with such an input will then 
reflect how the system modifies this uniform input at all frequencies. As 
discussed in Appendix C, this allows us to obtain the transfer function of a 
linear system. The shifted delta function ( )tδ τ− is an infinite spike at 

( )t τ−  
are: 
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( ) ( ) ( )
( )

0

0

/ 2

b

a

t t

a or b
g t t dt g a b

g a or b

δ τ τ

τ τ
δ τ τ τ

τ τ τ

− = ≠

⎧ < >
⎪

− = < <⎨
⎪ = =⎩

∫
 (A.12)
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time t =τ , as shown in Fig. A.9. Some important properties of δ

function becomes an infinite spike at t = 0 as shown in Fig. A.8 (a), which 
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Fig. A.10.  A unit step function at t = τ. 

where g(t) is an arbitrary function and H(t) is the unit step function. 
Equation (A.12) shows the sampling properties of the delta function while 
Eq. (A.13) shows that the integral of the delta function ( )tδ τ− is the step 
function ( )H t τ− , as shown in Fig. A.10. If we examine the several 
Fourier transform relations of Eq. (A.4) for the delta function we find 

( ) ( )0 0exp 2

2 .

t t i f t
d i f
dt

δ π
δ π

− ↔

↔ −
 (A.14)
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A.5 Exercises 

1 (a). Write a MATLAB function, spectrum1, which computes the positive 
frequency components of a signal given by 

  ( ) ( )22 2exp 4 cV f A A f fπ π⎡ ⎤= − −⎣ ⎦ , 

where A is given in terms of the -6 dB bandwidth, bw, as ( )ln 2 /A bwπ= . 
Spectrum1 should return sampled values of V for a set of sampled 
frequencies, f (in MHz), and a specified center frequency, fc , (in MHz), 
and bandwidth, bw,  (in MHz), i.e. we should have for the MATLAB 
function call: 
 
>> V = spectrum1(f, fc, bw) 
 

Show that your function is working by evaluating the spectrum for 
512 frequencies ranging from zero to 100 MHz with fc = 5 MHz, bw = 1 
MHz. Generate the frequencies with the function s_space (see Appendix 
G), i.e. evaluate 

 
>> f = s_space(0, 100, 512); 
 
Plot V over a range of frequencies 0 – 10 MHz (approximately). 

 

1 (b). Use the MATLAB function IFourierT to obtain a sampled time 
domain function, ( )v t , from the sampled spectrum computed in problem 
1 (a). Plot ( )v t  by first generating a set of 512 time domain values with 
the function s_space, i.e. 
 
>> t  = s_space(0,  512*dt, 512); 
 
where dt is the time interval between samples (which in this case is 
dt = 1/100). Then use the t_shift and c_shift functions given in Appendix 
G so that the sampled values of ( )v t   shown are not split between the first 
and last half of the window. Show that your results agree with the 
analytical result:  
        ( ) ( ) 2 2cos 2 exp / 4cv t f t t Aπ ⎡ ⎤= −⎣ ⎦  
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if we take into account the fact that we only used the positive frequency 
components. 
 
1 (c). Now apply the FourierT function to the sampled ( )v t obtained from 
part 1 (b) and plot the magnitude of the resulting spectrum ( )V f . How is 
this ( )V f  different from the one you started with? 
 
1 (d). If you look carefully at your plot of V(f) in part 1 (a) you should see 
that the sampling interval, f∆ , in the frequency domain is not quite small 
enough to give an accurate representation of the Gaussian function. Take 
the ( )v t signal obtained in 1 (b), shift it so that all the values in the second 
half of the time domain window are zero, and then append 512 zeros to 
that signal. Apply FourierT to this longer signal to obtain the spectrum. 
Show that this process, which is called zero padding, improves our 
resolution in the frequency domain. Note that zero padding does not affect 
the sampling frequency. 

 
2. The Hilbert transform, ( )f t⎡ ⎤⎣ ⎦H , of a function ( )f t is defined as 

 

          ( ) ( )1 f d
f t

t
τ τ

π τ

+∞

−∞

⎡ ⎤ =⎣ ⎦ −∫H . 

 
When a plane traveling wave of the form ( )/f t x c−  is reflected from a 
surface beyond a critical angle, as discussed in Appendix D, the Hilbert 
transform of the function ( )f t appears in the reflected wave causing the 
reflected waveform to be distorted from the incident wave. It can be shown 
[A.2] that if ( )F ω is the Fourier transform of ( )f t  then the Fourier 
transform of the Hilbert transform of ( )f t , ( )ωH , is given by 

( ) ( ) ( )sgni Fω ω ω= −H  where 
 

   ( )
1 0

sgn
1 0

ω
ω

ω
+ >⎧

= ⎨− <⎩
. 

 
We can use this fact in conjunction with the Fast Fourier transform as a 
convenient way to compute the Hilbert transform of a function. To see this 
consider the follow example: 
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In MATLAB, define a sampled time axis consisting of 1024 points 
going from t = 0 to t = 10 µsec. Over this time interval define a sampled 
function  ( )f t  that has unit amplitude for 4.5 5.5t< <  µsec and is zero 
otherwise. Use FourierT to calculate the Fourier transform, ( )F ω , of ( )f t . 
Then use the relationship ( ) ( ) ( )sgni Fω ω ω= −H  to find the Fourier 
transform of the Hilbert transform of ( )f t  and compute the Hilbert 
transform itself by performing an inverse Fourier transform on this result 
with IFourierT. [Note that if you use only the positive frequency values to 
compute the inverse, then we only need to multiply those values by i− ]. 
Plot your results versus time. In this case the Hilbert transform of ( )f t  
can be obtained analytically [Fundamentals]. It is 

  

   ( ) 1 5.5ln
4.5

tf t
tπ
−

⎡ ⎤ =⎣ ⎦ −
H . 

 
Using a different plotting symbol, plot this function also on the same 
graph. How do your results compare? 



B Impedance Concepts and Equivalent Circuits 

Impedance is very important concept for ultrasonic systems since it appears 
in a variety of contexts [B.1]. Thus, in this Appendix we will discuss briefly 
impedance as it appears in both electrical and acoustical components. We 
will also examine the concept of equivalent circuits and the use of Thévenin’s 
theorem to represent active electrical systems such as an ultrasonic pulser. 

B.1 Impedance 

Impedance is a quantity that is most often associated with electrical circuits. 
Consider, for example, the electrical elements shown in Fig. B.1. The time 
varying voltage and current for these elements are related to one another 
through the following relations: 

 

Resistor– ( ) ( )V t R I t=  (B.1a)

 

Capacitor– ( )( )dV tC I t
dt

=  (B.1b)

 

Inductor–  ( ) ( ) .
dI t

V t L
dt

=  (B.1c)

If we assume these voltages and currents are harmonic, i.e. ( )0 expV V i tω= − , 
( )0 expI I i tω= − , then for these elements we have 

 

Resistor–                               0 0V R I=  (B.2a)
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Fig. B.1. The voltage and current flowing (top to bottom) in a resistor, capacitor, 
and inductor, respectively. 
 

Capacitor– 0
0

IV
i Cω

=
−

 (B.2b)

 

Inductor–   0 0.V i L Iω= −  (B.2c)

We could instead take the Fourier transform of all the relations in 
Eqs. (B.1a-c) and view Eqs. (B.2a-c) as the relations between the Fourier 
transform of the voltage, ( )0V ω , and the Fourier transform of the current, 
( )0I ω , for these elements. In general, we see we can write for all these 

elements ( ) ( ) ( )0 0
eV Z Iω ω ω= , where ( )eZ ω is the complex electrical 

impedance. The impedance has the dimensions of volts/amps = ohms (Fourier 
transforms of voltage and current will have dimensions such as volts/Hz 
and amps/Hz but their ratio is still ohms). We see that ( ) ( ) ( )0 0

eV Z Iω ω ω=  
is true for these simple individual circuit elements. However, we can also 
take a complex circuit composed of many of these elements and also 
replace them by an equivalent complex impedance in the same fashion. 

Impedance also is associated with mechanical systems [B.1]. 
Consider, for example, the  mechanical  elements  shown  in Fig. B.2. The  
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Fig. B.2. The forces and displacements acting (top to bottom) in a spring, dashpot, 
and mass, respectively. 

time varying forces and displacements for these elements are related to one 
another through the following relations: 

 
 

Spring– ( )2 1F k u u= −  (B.3a)

 

Dashpot–     2 1
d

du duF c
dt dt

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (B.3b)

 

Mass–                              
2

2 .d uF m
dt

=   (B.3c)

Again, if we assume these forces and displacements are harmonic 
so that ( )0 expF F i tω= − , ( )expu U i tω= −  or take the Fourier transforms of 
Eq. (B.3a-c) we find 
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Spring– ( )0 2 1F k U U= −  (B.4a)

 

Dashpot–     ( )0 2 1dF i c U Uω= − −  (B.4b)

 

Mass–                              2
0 ,F m Uω= −  (B.4c)

which also can all be expressed in terms of a complex mechanical impedance, 
( )mZ ω , where ( ) ( ) ( )0

mF Z Uω ω ω= ∆ . In this case the dimensions of the 
mechanical impedance are that of stiffness, i.e. force/displacement. 

Ultrasonics inherently involves the propagation of waves and the 
concept impedance also is an important one for wave motion [Fundamentals]. 
Consider, for example, a 1-D plane pressure wave in a fluid propagating in 
the positive x-direction. The pressure and x-component of the velocity in 
the wave can be expressed in the forms 

( )
( )

/

/ ,x

p P f t x c

v V f t x c

= −

= −
 (B.5)

where P, V are pressure and velocity amplitudes of the waves (the function 
f is dimensionless) and c is the wave speed. However, the pressure and 
velocity in the fluid are related to one another though the equation of 
motion of the fluid, which is (see Appendix D) 

,xvp
x t

ρ
∂∂

− =
∂ ∂

 (B.6)

where ρ is the density of the fluid. Placing the pressure and velocity 
expressions of Eq. (B.5) into Eq. (B.6) then gives 

( ) ( )/ / ,P f t x c V f t x c
c

ρ′ ′− = −  (B.7)

where ( ) /f df u du′ = . It then follows that 

.P cVρ=  (B.8)

The quantity az cρ=  is called the specific acoustic impedance of a plane 
wave. If  we consider the  force in  the wave, F, generated  by the  pressure 
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Fig. B.3. A plane wave traveling in the x-direction and a cross-sectional area, S, of 
the wave front.  

acting on a cross-sectional area, S, of the wave front, as shown in Fig. B.3, 
then we have  

,F PS cSVρ= =  (B.9)

where aZ cSρ=  is called the acoustic impedance of the plane wave. This 
acoustic impedance has the dimensions in the SI system of  Newtons-second/ 
meter (N-s/m) and the specific acoustic impedance has the dimensions  
N-s/m3. For more general wave types the acoustic impedance or specific 
acoustic impedance is in general a complex quantity. 

An ultrasonic system inherently contains electrical and electromecha-
nical elements as well as propagating acoustic and elastic waves. Thus, the 
system will be described by a variety of different impedances and we need 
to distinguish between them. In this book we will use the symbol “Z” for 
impedances and denote electrical impedance by an “e” superscript and 
acoustical impedance by an “a” superscript, a notation also followed in 
this section. For example, in Chapter 4 the electrical input impedance of a 
transmitting transducer A is given as ;A e

inZ  while the same transducer’s 
acoustic radiation impedance is given as ;A a

rZ . 

B.2 Thévenin’s Theorem 

An ultrasonic system contains both active and passive electrical and 
electromechanical elements. The pulser, for example is an active electrical 
network since it contains the driving elements of the ultrasonic system. 
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Fig. B.4. An electrical network with sources connected to a passive network. 

 
 

Fig. B.5. Introduction of a voltage source that makes the current flow between the 
two networks zero. 

Cables and transducers are passive networks since they merely transfer 
and/or transform energy but do not generate it. To model in detail an active 
electrical network like a pulser would be a very challenging task since a 
pulser is a very complex set of circuits. If we assume the pulser acts as a 

and replace a pulser with a simple equivalent circuit consisting of a voltage 
source and electrical impedance in series. Here, we will outline briefly the 
proof of this important theorem [B.2]. 

Consider an electrical network, AN , that contains both passive 
elements and sources and connect it at its terminals to a network, BN , that 

( )i t be the current flowing 
between two networks at terminals a-b. It is assumed here that both AN  
and BN  are linear networks. Now introduce an opposing voltage source, 
( )V t , in front of the terminals a-b such that the current is driven to zero, as 

AN  and 
 

linear device then Thévenin’s theorem allows us to avoid this complexity 

is passive (no sources) as shown in Fig. B.4. Let 

shown in Fig. B.5. Since now there is no current  flowing  between 
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Fig. B.6. The network AN detached from the passive network BN . 

 
Fig. B.7. Re-attaching the network A with all the sources replaced by ( )0V t . 

BN , the voltage across terminals a-b, abV , is zero and we can break the 
circuit at a-b , as shown in Fig. B.6, without disturbing any voltages or 
currents. Because there is no current flowing out of the network AN in 
Fig. B.6 the voltage ( )0V t  in that figure is the output voltage of the 
network AN  under open-circuit conditions and it follows that 

( ) ( )0 0,abV t V t V− = =  (B.10)

which shows that V(t) is just the open-circuit voltage, V0(t), of network 
AN . If we now reverse the polarity of V(t) and remove all the sources in 
AN  (by replacing them with short circuits), when we reattach AN  to BN  

the original current will be set up between AN  and BN , as shown in 
Fig. B.7. Since BN  is a passive network, the voltage across terminals a-b 
will also  be  the  same  as  in the  original  setup. Thus, we can say that the 
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Fig. B.8. (a) The Thévenin equivalent network of Fig B.7 represented in the 

 
A two terminal network containing sources and passive elements is 
equivalent (as far as its external effects are concerned) to a voltage source 
in series with the network with all the sources removed; the voltage of the 
equivalent source has the same magnitude and polarity as those of the 
voltage appearing across the terminals of the original network under 
open-circuit conditions.  

 
If we Fourier transform all the voltages and currents appearing in 

these networks and work in the frequency domain, then the original 
network with it sources removed is equivalent to a complex electrical 
impedance, ( )e

AZ ω , and we can replace our original network with the 

two equations 

( ) ( ) ( )
( ) ( ) ( )0 ,

e
c A

c

V Z i

V V V

ω ω ω

ω ω ω

=

− =
 (B.11)

which give 

( ) ( ) ( ) ( )0 .e
AV V Z iω ω ω ω− =  (B.12)

It is often customary to exchange the positions of the source and 
impedance so that the source “drives” that impedance, as shown in 
Fig. B.8 (b). If we let ,V V i i′ ′= − = −  and 0 0V V= −  in Eq. (B.12) then that 

frequency domain by a complex source and impedance, and (b) the same equivalent 
circuit with the source and impedance exchanged.  

equation still  holds for the  equivalent circuit  shown in Fig. B.8 (b). Thus,  

circuit shown in Fig. B.7 is equivalent to the original circuit of Fig. B.4. This
is the essence of Thévenin’s theorem which states that: 

equivalent circuit of Fig. B.8 (a). However, from that figure we have the 
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Fig. B.9. An RC-circuit and voltage source. 

 
Fig.B.10. (a) The RC-circuit showing the open-circuit voltage, 0V , and the current, I, 
flowing in the circuit, and (b) the source-free circuit that must be placed in series 
with the open-circuit voltage to obtain the Thévenin equivalent circuit. 

 
the complex source and impedance of Fig. B.8 (b) is the Thévenin equi-
valent circuit corresponding to our original network. 

Example: Consider the simple circuit shown in Fig. B.9 where a 
voltage source with frequency components  ( )iV ω  is connected to a resis-
tance, R, and a capacitance, C. Determine the Thévenin equivalent source 
and impedance that replaces this circuit. 

Consider the open-circuit voltage, ( )0V ω , and the current, ( )I ω , 
in the circuit as shown in Fig. B.10 (a). We have the relations 

0

0 .

iV V IR
IV

i Cω

− =

=
−

 (B.13)

 



468      Impedance Concepts and Equivalent Circuits 

 
Fig. B.11. The Thévenin equivalent circuit for a pulser attached to a known external 
resistance, LR , for measuring the impedance, ( )eZ ω . 

If we eliminate I from these two equations we find the Thévenin equivalent 
source is 

( ) ( )
0 .

1
iV

V
i RC
ω

ω
ω

=
−

 (B.14)

This circuit in series with the original circuit with the sources removed 
(short-circuited) is our Thévenin equivalent circuit. The source-free circuit 
is shown in Fig. B.10 (b) where we see that we just have the resistor and 
capacitor in parallel. Thus, the equivalent impedance, eZ ,  of this source-free 
circuit is just 

( ) ( )
1 1 1 ,

1/eZ R i Cω ω
= +

−
 (B.15)

which gives 

( ) .
1

e RZ
i RC

ω
ω

=
−

 (B.16)

B.3 Measurement of Equivalent Sources and Impedances 

A pulser in an ultrasonic measurement system is an example of an 

 
electrical network containing sources. As shown in Chapter 2 if we assume  
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Fig. B.12. A setup for determining the impedance of the RC-circuit. 

 
the pulser acts as a linear system we can find the Thévenin equivalent source 
for the pulser, ( )0V ω , by measuring the open-circuit voltage, ( )0V t , at the 
output terminals of the pulser and Fourier transforming this measured 
voltage to obtain ( )0V ω . But how do we find the equivalent impedance, 

( )eZ ω  , of a real instrument such as a pulser since we cannot go into the 
instrument and physically short circuit the sources, as we did with the 
known circuit in the previous example? Instead, as shown in Chapter 2, we 
can place a known load resistance, LR , at the output terminals of the 
pulser and measure the voltage, ( )LV t , across this load. Fourier 
transforming this voltage then gives ( )LV ω (see Fig. B.11). But from the 
Thévenin equivalent circuit of the pulser shown in Fig. B.11 (see also 
Chapter 2), we find that 

0

.

e
L

L L

V V Z I
V R I

− =

=
 (B.17)

So eliminating the current, I, we find 

( ) ( )
( )

0 1 .e
L

L

V
Z R

V
ω

ω
ω

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (B.18)

Equation (B.18) shows that with measurements of both ( )0V ω  and ( )LV ω , 
with the resistance, LR , known, we can determine the Thévenin equivalent 
impedance, ( )eZ ω . Note that this impedance does not depend on the 
value of the known resistance. It is only a function of the properties of the  
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pulser itself. We can demonstrate this method for determining the impedance 
for our RC-circuit example again. Figure B.12 shows that circuit and the 
resistance, LR , at its output terminals. From Fig. B.12, we have 

( )

1

2

1 2 .

i L

L L

L

V V I R
V I R

I I
V

i Cω

− =

=

−
=

−

 
(B.19)

Eliminating the currents 1 2,I I  from these equations gives 

( )
.

1 /
i

L
L

VV
i RC R Rω

=
− +

 (B.20)

Using Eq. (B.20) and Eq. (B.14) for the Thévenin equivalent source, we 
find 

( ) ( )
( )

( )
( )

( ) ( )

0 1 /
1 1

1

/ ,
1 1

Le
L L

L

L
L

V i RC R R
Z R R

V i RC

R R RR
i RC i RC

ω ω
ω

ω ω

ω ω

⎛ ⎞ ⎧ ⎫− +⎪ ⎪= − = −⎜ ⎟ ⎨ ⎬⎜ ⎟ −⎪ ⎪⎝ ⎠ ⎩ ⎭
⎧ ⎫⎪ ⎪= =⎨ ⎬

− −⎪ ⎪⎩ ⎭

 (B.21)

which is the same value for the impedance obtained earlier in Eq. (B.16) 
and is indeed independent of LR . 

B.4 References 

B.1 Cremer L, Heckl M, Ungar EE (1973) Structure-borne sound. Springer-
Verlag, Berlin, Germany  

B.2 Cheng DK (1959) Analysis of linear systems. Addison Wesley, Reading, PA 

B.5 Exercises 

1. A propagating harmonic spherical pressure wave from a point source in 
a fluid is given by ( )exp /p P ikr i t rω= − , where r is the radial distance 
from  the source  (see Fig. B.13).The  radial  velocity can also similarly  be 
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Fig. B.13. A spherical wave arising from a point source in a fluid. 

 

Fig. B.14. An example circuit. 

 
     
 

written as ( )exp /rv V ikr i t rω= − . If the equation of motion of the fluid in 
spherical coordinates is given by  

 

,rvp
r t

ρ ∂∂
− =
∂ ∂

 

 
determine the specific acoustic impedance P/V of this spherical wave. 
What happens to this impedance when the frequency,ω , is very large? 

 
2. For the circuit shown in Fig. B.14 obtain the Thévenin equivalent source 
and impedance in terms of the given circuit elements. 



C Linear System Fundamentals 

In this book an ultrasonic system is modeled as a series of interconnected 
linear systems. Thus, linear system theory will be a fundamental part of all 
our discussions. This Appendix will outline a number of key linear 
systems concepts such as two port systems and linear time-shift invariant 
systems. We will also discuss the role that the convolution theorem plays 
in linear systems as well as related quantities such as impulse response 
functions and transfer functions. 

C.1 Two Port Systems 

The pulser in an ultrasonic system is an active circuit (a circuit with 
sources) that drives the rest of the ultrasonic system through the pulser 
output port. The cabling and transducer(s) in an ultrasonic system normally 
are passive elements (no sources) and they contain both input and output 
ports, as shown in Fig. C.1. In the case of a cable, it is purely an electrical 
system so the inputs and outputs are both of the same type (voltage, 
current). An ultrasonic transducer transforms voltage, V, and current, I, at 
its electrical port into a mechanical force, F, (arising from a pressure 
distribution on the face of a piezoelectric crystal as shown in Fig. C.1 (b)) 
and a velocity, v, (which represents the average velocity of motion of the 
crystal) at its acoustic port. The underlying velocity distribution is shown 
in Fig. C.1 (b) as being uniform at the acoustic port. A transducer with this 
type of velocity profile is called a piston transducer. [Note: piston trans-
ducer models have been shown to often be very effective for modeling real 
commercial ultrasonic transducers but one should be aware that this 
idealized model may not be suitable for all transducers. In this book we 
will generally assume a piston transducer model is valid]. 

We can represent a purely electrical two port system such as a 
cable schematically as shown in Fig. C.2 [C.1]. Note that it is customary to 
assign the currents so that they flow into the two port system on the input 
side and flow out on the output side, a convention that we will also follow 
here. 
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Fig. C.1. (a) Cabling as a two port electrical system, and (b) an ultrasonic trans-
ducer as two port system with voltage, V, and current, I, at the electrical port and 
force, F, and velocity, v, at the acoustic port. The force F is the net compressive 
force generated by the pressure distribution acting across the face of the transducer 
and v is the average velocity due to the velocity distribution of the transducer face. 
The pressure distribution is non-uniform, as shown, but the velocity distribution is 
taken to be the uniform velocity profile of a piston transducer.  

Since we will assume this is a linear system the inputs and outputs 
are proportional to each other through a 2x2 transfer matrix, [ ]Τ , where 

( )
( )

( )
( )

1 211 12

1 221 22

.
V VT T
I IT T

ω ω
ω ω

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

 (C.1)

The dimensions of the elements of the transfer matrix are: 11 22,T T : 
dimensionless, 12T :ohms, 21T :1/ohms. Note that the voltages and currents in 
Eq. (C.1) are all in the frequency domain, i.e. they are the Fourier transforms 
of the time varying voltages and currents present at the input and output 
ports. Thus, the transfer matrix is also in the frequency domain. Another 
common way to represent a two port system is in terms of a 2x2 impedance 
matrix, e⎡ ⎤⎣ ⎦Z . In this case it is usual to represent the currents on both sides 
of the two port system as flowing into the system, as shown in Fig. C.3, 
and write: 
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Fig. C.2. An electrical two port system represented by a transfer matrix. [ ]T . 

 
Fig. C.3. An electrical two port system represented by an impedance matrix, 

e⎡ ⎤⎣ ⎦Z . 

( )
( )

( )
( )

1 111 12

2 221 22

,
e e

e e

V IZ Z
V IZ Z

ω ω
ω ω

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥ ′⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭
 (C.2)

where 2 2I I′ = − . In this case the dimensions of the elements of the 
impedance matrix are all ohms. In addition to linearity, we will assume 
that a two port system is reciprocal. The meaning of reciprocity is as 
follows. Consider a two port system, characterized by its transfer matrix 
[ ]T (or, equivalently, by its impedance matrix, e⎡ ⎤⎣ ⎦Z ). Let us attach this 
two port system to electrical networks A and B at its input and output 
terminals, respectively, as shown in Fig. C.4. We will call this connected 
set of systems state (1). Under these conditions the voltage and current at 
the input  port are ( ) ( )1 1

1 1,V I  and the voltage and  current  at  the  output  port  
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Fig. C.4. A two port system with its ports terminated differently in two states, 
labeled states (1) and (2). 

are ( ) ( )1 1
2 2,V I . Now, attach the same two port system to two other networks 

C and D, as shown in Fig. C.4. Call this connected set of systems state (2). 
Then in this state we have ( ) ( )2 2

1 1,V I  and ( ) ( )2 2
2 2,V I  for the voltages and 

currents at the input and output port, respectively. Our two port system is 
said to be reciprocal if for any two states (1) and (2) the inputs and outputs 
satisfy the reciprocity relation given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 1 1 2 2 1
1 1 1 1 2 2 2 2 .V I V I V I V I− = −  (C.3)

Equation (C.3) is a rather “opaque” equation in that it is difficult to see 
what it really means. However, when it is applied to our two port system 
written in terms of its impedance matrix, one can show that reciprocity 
simply implies that the impedance matrix is symmetric, i.e. 21 12

e eZ Z= [C.1]. 
Similarly, Eq. (C.3) implies that determinant of the transfer matrix of the 
two port system equals one, i.e. [ ] 11 22 12 21det 1T T T T= − =T [C.1]. 

 For a linear, reciprocal two port system the components of the 
transfer matrix and the impedance matrix are obviously related. It is not 
difficult to show that the transfer matrix can be expressed in terms of the 
impedance matrix components as: 
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Fig. C.5. A cascade of linear, reciprocal two port systems and their replacement 
by a single “global” two port system. 

[ ] ( )( )2

11 12 11 22 12 12

12 22 12

/ /
.

1/ /

e e e e e e

e e e

Z Z Z Z Z Z

Z Z Z

⎡ ⎤−⎢ ⎥=
⎢ ⎥
⎣ ⎦

T  (C.4)

From Eq. (C.4) it follows directly that [ ]det 1=T , as it should be. 
Similarly, the impedance matrix can be written in terms of the transfer 
matrix components as: 

11 21 21

21 22 21

/ 1/
,

1/ /
e T T T

T T T
⎡ ⎤

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎣ ⎦

Z  (C.5)

which shows that 21 12
e eZ Z=  is automatically satisfied.  

 One can express impedance components in terms of transfer 
matrix components and vice versa so in principle it does not matter which 
of these representations we use for a two port system. However, when one 
is dealing with a series of connected two port systems, as is the case for an 
ultrasonic system (e.g. the cabling is attached to the transducer, both of 
which are two port systems) then the transfer matrix is more convenient to 
use since one can replace a series of connected two port systems, each 
characterized by their own transfer matrices [ ] [ ] [ ]1 2, ,..., NT T T as shown in 
Fig. C.5, by a  single  global  2x2  transfer matrix , [ ]GT , where the  global  
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Fig. C.6. An RC-circuit modeled as a two port system.  
 
matrix is obtained by matrix multiplication of each of the individual transfer 
matrices, i.e. 

[ ] [ ][ ] [ ]1 2 ... .G N=T T T T  (C.6)

This global transfer matrix is also reciprocal if the individual transfer 
matrices are reciprocal since 

[ ] [ ] [ ] [ ]1 2det det det ...det 1.G N= =T T T T  (C.7)

As a simple example of a linear, reciprocal two port system, consider the 
RC-circuit example used in Appendix B with the voltage source removed 
to form the two port system shown in Fig. C.6. To determine the transfer 
matrix for this circuit, consider first the voltage across the resistance and 
the current flowing through it. We have 

1 2 1.V V RI− =  (C.8)

Also, considering the voltage across the capacitor and the current flowing 
through it (which is 1 2I I−  flowing downwards) we find 

1 2
2 .I IV

i Cω
−

=
−

 (C.9)

Equation (C.9) can be written directly in transfer matrix form (inputs in 
terms of outputs) as 

1 2 2.I i CV Iω= − +  (C.10)
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Fig. C.7. (a) An RC-circuit with a voltage source at the input and open-circuit 
conditions at the output, and (b) the representation of this terminated system as a 
single input-single output system. 

If we now place Eq. (C.10) into Eq. (C.8), the resulting equation can also 
be placed in transfer matrix form as 

( )1 2 21 .V i RC V RIω= − +  (C.11)

From Eqs. (C.10) and (C.11) the transfer matrix follows directly, giving 

( )1 2

1 2

1
.

1
V Vi RC R
I Ii C

ω
ω

⎡ ⎤−⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎩ ⎭⎣ ⎦

 (C.12)

Equation (C.12) shows that [ ]det 1=T is indeed satisfied for this system so 
that it is reciprocal. Using Eq. (C.5) we can also obtain the impedance 
matrix directly for this two port system, where 

( )1 1

2 2

1 / 1/
,

1/ 1/
V Ii RC i C i C
V Ii C i C

ω ω ω
ω ω

⎡ ⎤− −⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥ −− −⎩ ⎭ ⎩ ⎭⎣ ⎦

 (C.13)

and obviously we also have 21 12
e eZ Z= . 
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Fig. C.8. A general linear time-shift invariant (LTI) system. 

C.2 Linear Time-Shift Invariant (LTI) Systems 

If we have a two port linear system that is terminated in some fashion at 
both its ports, then this two port system reduces to a system where single 
inputs and outputs can be linearly related to each other [C.2], [C.3], [C.4]. 
As an example, consider again the RC-circuit two port system of Fig. C.6. 
If we attach a voltage source ( )iV t  at its input port and leave the output 
port open-circuited (Fig. C.7 (a)), we have a linear system where we can 
relate the open-circuit voltage, ( )0V t , to the input voltage, ( )iV t . This 
type of single input-single output system can be represented schematically 
as shown in Fig. C.7 (b). For this simple system it is easy to see that 

( ) ( ) ( )

( )

0

0 .

iV t V t i t R
dVi t C
dt

− =

=
 (C.14)

Eliminating the current between the two equations in Eq. (C.14), we see 
that 0V  is related implicitly to iV  through the solution of the differential 
equation given by 

( ) ( ) ( )0 0 .idV t V t V t
dt RC RC

+ =  (C.15)

We can write this relation symbolically as 

( ) ( )0 ,iV t L V t= ⎡ ⎤⎣ ⎦  (C.16)

where [ ]L  is a linear operator since the underlying RC-circuit is linear. 
An important class of linear single input, single output systems is 

called a linear time-shift invariant (LTI) system, as shown schematically in  
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Fig. C.9. (a) An LTI system driven by a delta function input, and (b) driven by a 
general input. 

Fig. C.8. for a general input, ( )i t , and output, ( )o t . An LTI system is defined 
as a linear system where a time shift of the input signal produces exactly 
the same time shift of the output signal. These properties can be stated 
mathematically as follows: 

 
Linearity: 

If 
( ) ( )
( ) ( )

1 1

2 2

o t L i t

o t L i t

= ⎡ ⎤⎣ ⎦
= ⎡ ⎤⎣ ⎦

 then 
( ) ( ) ( )

( ) ( )
1 1 2 2

1 1 2 2

o t L a i t a i t

a L i t a L i t

= ⎡ + ⎤⎣ ⎦
= ⎡ ⎤ + ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (C.17)

Time-Shift Invariance: 

If ( ) ( )o t L i t= ⎡ ⎤⎣ ⎦  then ( ) ( )0 0o t t L i t t− = ⎡ − ⎤⎣ ⎦  (C.18)

 
It is clear that The RC-circuit example just considered is an LTI system. 
We expect that elements of an ultrasonic NDE system in general may also 
be modeled as LTI systems. LTI systems have the important property that 
they can be characterized completely by their response to a delta function 
input, ( )tδ . This delta function response is called the impulse response 
function, ( )g t , of the system, and the Fourier transform of this impulse 
response, ( )G f , we will call the transfer function of the LTI system.  
Figure C.9 (a) shows an LTI system being driven by a delta function input, 
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Fig. C.10. Representing a general input function as a superposition of delta 
function inputs. 

 
Fig. C.11. A series of LTI systems. 

while Fig. C.9 (b) shows the same system under a general input. It can be 
shown that the output, o(t), of an LTI system to a general input, i(t), is 
given in terms of a convolution integral of that input with the impulse 
response function, g(t), i.e. 

( ) ( ) ( )

( ) ( ) .

o t i g t d

g i t d

τ τ τ

τ τ τ

+∞

−∞

+∞

−∞

= −

= −

∫

∫
 (C.19)

Equation (C.19) follows directly from the properties of an LTI system 
since we can take a general input function and consider it as a super-
position of small rectangular elements as shown in Fig. C.10. A general 
rectangular element at time τ of width ∆τ and amplitude i(τ) is shown in 
that figure. This element, however, acts like a shifted delta function 
(located at t = τ) a with strength (area) i(τ)∆τ. Thus, from the linearity  
and time shift invariance properties of the system, we have that the output, 
∆o, from this rectangular element is given by ( ) ( ) ( )o t i g tτ τ τ∆ ≅ ∆ −  



C.2 Linear Time-Shift Invariant (LTI) Systems      483 

and so by superposition over all elements, we have the total output, o(t), 
due to the total input given by 

( ) ( ) ( )

( ) ( ) .

o t i g t

i g t d

τ τ τ

τ τ τ
+∞

−∞

≅ ∆ −

= −

∑

∫
 (C.20)

The convolution integral of Eq. (C.19) is a fundamental relationship for 
LTI systems. If we take the Fourier transform of this relationship we  obtain 
an even simpler result since, if we define the following Fourier transforms 
of the input, output, and impulse response functions, respectively: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

exp 2

exp 2

exp 2

I f i t ift dt

O f o t ift dt

G f g t ift dt

π

π

π

+∞

−∞

+∞

−∞

+∞

−∞

=

=

=

∫

∫

∫

 (C.21)

and if  the output and input are related through the convolution integral of 
Eq. (C.19), then it is easy to show that their Fourier transforms are related 
through [Fundamentals] 

( ) ( ) ( ) ,O f G f I f=  (C.22)

i.e. convolution in the frequency domain is just obtained by complex-
valued multiplication. In a similar fashion, deconvolution in the frequency 

example, we can write 

( ) ( )
( )

.
O f

G f
I f

=  (C.23)

In practice, however, such division must be done with care since noise 
may contaminate both the numerator and denominator and make the ratio 
unreliable. Often filters are used to desensitize the deconvolution process 
to such errors. A Wiener filter is a particular filter commonly used for 
deconvolution purposes in ultrasonic NDE. With that filter, Eq. (C.23) is 
replaced by 

domain is in principle accomplished by complex-valued division.  F or  



484      Linear System Fundamentals 

 
Fig. C.12. An ultrasonic flaw measurement system. 

( ) ( ) ( )
( ) ( ){ }

*

2 22
,

max

O f I f
G f

I f I fε
=

+
 (C.24)

where ( )*  denotes the complex conjugate and ε is a small constant that is 
used to represent the noise level present. The quantity ( ){ }2

max I f  is a 
constant. It is the maximum value of the magnitude squared of the values 
of ( )I f present. In this form ε gives a measure of the noise as a fraction of 
the size of the signals present. Generally, small values such as 0.01ε = to 
0.05 work well for many ultrasonic problems. When 0ε → , Eq. (C.24) 
reduces to Eq. (C.23). Code listing C.1 gives a MATLAB function for 
implementing the Wiener filter of Eq. (C.24).The use of transfer functions 
such as ( )G f is very convenient, particularly when we have a series of 
connected LTI systems as shown in Fig. C.11 since the input and output of 
the entire system can be related through simply a product of the transfer 
functions of each subsystem, i.e. 

( ) ( ) ( ) ( ) ( )1 2 .NO f G f G f G f I f= ⋅⋅ ⋅  (C.25)

In the time domain, the relationship equivalent to Eq. (C.25) would be a 
series of nested convolution integrals. By working in the frequency domain 
we can avoid having to deal with multiple integrations and instead we need 
 



C.2 Linear Time-Shift Invariant (LTI) Systems      485 

 Code Listing C.1. A MATLAB function for the generation of a Wiener filter. 
 
  
function Y = Wiener_filter( O, I, e) 
% WIENER_FILTER provides a 1-D filter for desensitizing 
% division in the frequency domain (deconvolution) to noise. 
% The filter takes a sampled output spectrum ,O, and an  
% input spectrum, I, and computes Y = O*conj(I)/(|I|^2 + e^2*M^2) 
% where M is the maximum value of |I| and conj(I) is the 
% complex conjugate of I. The constant e is generally taken as 
% a constant to represent the noise level. Small values of e  
% such as e = 0.01 often work well for ultrasonic systems. 
%The calling sequence is: 
%Y = Wiener_filter(O,I,e); 
% 
M = max(abs(I)); 
Y = O.*conj(I)./((abs(I)).^2 + e^2*M^2); 

 
 
 
only a series of complex multiplications to obtain ( )O f  from the input. 
The time domain output, ( )o t , can then be obtained by an inverse Fourier 
transform. 

 As an example of such a cascade of LTI systems, consider an 
ultrasonic pitch-catch flaw measurement system, as shown in Fig. C.12. 
Let ( )iV f be the frequency components of the Thévenin equivalent input 
voltage of the pulser. This input then travels through the sending cable and 
drives the sending transducer which outputs a mechanical force, ( )tF f at 
its acoustic port. This force launches a wave into the specimen which then 
interacts with a flaw and in turn produces a driving force, ( )BF f , on the 
receiving transducer. This driving force is converted into electrical energy 
which is transmitted by the receiving cable back to the receiver, where it is 
amplified and output as the received flaw signal, ( )RV f . If we treat this 
entire measurement system as a series of  LTI systems, then we can write: 
 

( ) ( )
( )

( )
( )

( )
( ) ( )

( ) ( ) ( ) ( ) ,

R B t
R i

B t i

R A G i

V f F f F f
V f V f

F f F f V f

t f t f t f V f

=

=

 (C.26)
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where ( )Gt f  is the transfer function for the sound generation process 
(containing properties of the pulser, cabling, and sending transducer), 

( )Rt f  is the transfer function for the sound reception process (containing 
properties of the receiving transducer, cabling, and receiver), and ( )At f  is 
the transfer function describing the acoustic/elastic processes (wave 
propagation to the flaw, scattering from the flaw, and propagation from the 
flaw to the receiving transducer). We will see that it is possible to model 
and/or measure all of these transfer functions so that through Eq. (C.26) 
we have an ultrasonic measurement model of our entire ultrasonic system. 
The challenge, of course, is to obtain explicit expressions for the transfer 
functions in Eq. (C.26). Much of this book is devoted to just that task. 

C.3 References 

nd

C.2 Cheng DK (1959) Analysis of linear systems. Addison Wesley, Reading, PA  

Hill, New York, NY  

C.4 Exercises 

1. Consider a two port electrical system where 

( )
( )

( )
( )

1 211 12

1 221 22

.
V VT T
I IT T

ω ω
ω ω

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

 

We wish to measure the transfer matrix components (as a function of 
frequency). This is easy to do if we first measure the inputs and outputs 
under open-circuit conditions at the output port since 2 0I = . Thus, if we let 
the voltages and currents be ( )1 1,oc ocV I and ( )2 2, 0oc ocV I =  we have 

1 1
11 21

2 2

, .
oc oc

oc oc

V IT T
V V

= =  
 

 

C.4 Papoulis A (1968) Systems and transforms with applications in optics. McGraw-

New York, NY  

New York, NY  
C.3 Gaskill JD (1978) Linear systems, transforms, and optics. McGraw-Hill, 

ed. John Wiley and Sons, C.1 Pozar DM (1998) Microwave engineering, 2 
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Fig. C.13. A measurement setup for obtaining the transfer matrix components of a 
two port system using different output terminations. 

Similarly, if under short- circuit conditions at the output port ( 2 0V = ) we 
measure the voltages and currents ( )1 1,sc scV I , ( )2 20,sc scV I=  we have 

1 1
12 22

2 2

, .
sc sc

sc sc

V IT T
I I

= =  

Now, perform these “measurements” in MATLAB for an unknown two 
port system, two_portX, which is written in terms of a MATLAB function 
which has the calling sequence: 
 
>> [ v1, i1, vt, it] = two_portX( V, dt, R, 'term'); 
 
The input arguments of two_portX are as follows. V is a sampled voltage 
source versus time, where the sampling interval is dt. R is an external 
resistance (in ohms). This source and resistance are connected in series to 
one end of the two port system as shown in Fig. C.13. The other end of the 
system can be either open-circuited or short-circuited. The string 'term' 
specifies the termination conditions. It can be either 'oc' for open-circuit or 
'sc' for short-circuit. The function two_portX then returns the “measured” 
sampled voltages and currents versus time: v1, i1, vt, it (Note: for open-
circuit conditions the function returns it = 0 and for short-circuit conditions 
vt = 0). 
 As a voltage source to supply the V input to two_portX use the 
MATLAB function pulserVT. For a set of sampled times this function 
returns a sampled voltage output that is typical of a “spike” pulser. Make a 
vector, t, of 512 sampled times ranging from 0 to 5 µsec, and call the 
pulserVT function with the following call sequence: 
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>> V = pulserVT(200, 0.05, 0.2, 12, t); 
 
For the resistance, take R = 200 ohms. Using Eq. (C.14), determine the 
four transfer matrix components and plot their magnitude and phase from 
zero to approximately 30 MHz. Note that the outputs of two_portX are all 
time domain signals but the quantities we wish to measure are all in the 
frequency domain. 
  
2. It is not physically possible to generate a delta function as the input of 
an LTI system to obtain its impulse response. However, it is possible to 
obtain the transfer function of an LTI system by deconvolution of a 
measured output with a known input as shown in Eq. (C.23). Consider a 
MATLAB function LTI_X that represents a “black box” LTI system. It 
can be evaluated in the form 
 
>> O =LTI_X(I, dt)  
 
Where I is a sampled time domain input (with sampling interval dt) and O 
is the time domain output. Use as an input for this LTI system the voltage 
output of the pulserVT function of problem 1 and obtain the transfer 
function of this system as a function of frequency by deconvolution. Plot 
the magnitude and phase (in degrees) of this transfer function from zero to 
approximately 30 MHz. To obtain the impulse response function from this 
transfer function we would have to compute its inverse Fourier transform. 
Is that possible with this function? 
  
3. Consider an LTI system which has as its transfer function 

( )
cos( / 40) 0 20

.
0

f f MHz
G f

otherwise
π < <⎧

= ⎨
⎩

 

Also, consider an input spectrum to this system given by 

( )
1 / 20 0 20

.
0

f f MHz
I f

otherwise
− < <⎧

= ⎨
⎩

 

We expect the output of this system will then have the spectrum 

( ) ( ) ( ).O f G f I f=  

However, if we add noise to these functions then given O and I it may not 
be possible to reliably obtain G by simple division and we must use some 
filter instead such as the Wiener filter. The MATLAB function noisy will 
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generate noisy sampled versions of both the O and I given previously over 
a range 0-40 MHz. The function call is: 
   
>> [O, I] = noisy(  ) ; 
 
Plot both O and I from 0 to 40 MHz to verify those functions are correct 
(the noise you will see is very small) and then attempt to obtain G by direct 
division, i.e. compute 

( ) ( )
( )

O f
G f

I f
=  

and plot your results 0-40 MHz. Then use a Wiener filter instead to find G 
and plot your results. Take ε = 0.01. Are the results sensitive to ε? Is there 
any other way (besides using the Wiener filter) that you can get the “right” 
answer? 



D Wave Propagation Fundamentals 

D.1 Waves in a Fluid 

In immersion testing the waves are generated by a transducer radiating 
sound into a fluid. Sound propagation in the fluid can be modeled by 
considering the fluid to be an ideal (viscous-free) compressible fluid. In 
this case, an element of the fluid only has pressures (compressive normal 
stresses) acting on its surfaces. If a wave in the fluid generates pressure 
changes in the x1-direction, as shown in Fig. D.1, then we can relate those 

to a small element as shown in Fig. D.1 [Fundamentals], [D.1]. We find 
from 

x xF ma=∑  (D.1a)

that 
2

1
2 3 1 2 3 1 1 2 3 1 2 3 2

1

,uppdx dx p dx dx dx f dx dx dx dx dx dx
x t

ρ
⎛ ⎞ ∂∂

− + + =⎜ ⎟∂ ∂⎝ ⎠
 (D.1b)

which gives the equation of motion of the fluid in the x1-direction as 
2

1
1 2

1

,up f
x t

ρ ∂∂
− + =

∂ ∂
 (D.1c)

where p is the pressure, ρ is the density of the fluid, 1u  is the displacement 
in the 1x -direction and 1f  is the body force (force/unit volume) acting on 

2 3
directions we find the equations of motion: 
 
 
 
 

changes to the motion of the fluid by simply applying Newton’s third law 

the fluid. Similarly, if we consider the pressure changes in the  x , x  
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Fig. D.1. The pressures and body force acting on an element of an ideal, 
compressible fluid. Only the pressure changes in the x1-direction are shown 
explicitly. 

2
2

2 2
2

2
3

3 2
3

.

up f
x t

up f
x t

ρ

ρ

∂∂
− + =

∂ ∂

∂∂
− + =

∂ ∂

 (D.2)

These three equations of motion of the fluid can also be written in vector 
form as 

2

2 ,p
t t

ρ ρ∂ ∂
− + = =

∂ ∂
u vf∇  (D.3)

where / t= ∂ ∂v u  is the velocity of the fluid. If we assume that the fluid is 
an ideal compressible fluid, then the pressure is related to the relative 
volume changes, /dV V , occurring in the fluid through the constitutive 
equation 

,dVp
V

λ= −  (D.4)

where λ  is the bulk modulus of the fluid. For water, for example, the bulk 
modulus is approximately 2 GPa. These relative volume changes can be 
written in terms of the displacements, so we also have 
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Fig. D.2. 1-D waves traveling in a fluid. 

31 2

1 2 3

.uu up
x x x

λ λ
⎛ ⎞∂∂ ∂

= − ⋅ = − + +⎜ ⎟∂ ∂ ∂⎝ ⎠
u∇  (D.5)

To place this constitutive equation in the equations of motion, we first take 
the divergence ( ⋅∇  ) of Eq. (D.3) which gives 

( )2
2

2 ,bp f
t

ρ
∂ ⋅

−∇ − =
∂

u∇
 (D.6)

where bf = − ⋅ f∇ and 2 2 2 2 2 2 2
1 2 3/ / /x x x∇ = ∂ ∂ + ∂ ∂ + ∂ ∂  is the Laplacian 

operator. We then can place Eq. (D.5) into Eq. (D.6) to obtain the 
inhomogeneous wave equation for the pressure given by 

2
2

2 2

1 ,b
pp f

c t
∂

∇ − = −
∂

 (D.7)

where /c λ ρ=  is the wave speed of compressional waves (also called 
P-waves) in the fluid. For water, for example, c = 1480 m/sec, 
approximately. In NDE tests the ultrasonic waves that are generated are 
freely traveling so that they must satisfy the homogeneous wave equation, 
i.e. where 0bf = . 

D.2 Plane Waves in a Fluid 

If we consider 1-D disturbances of the fluid where ( )1,p p x t= , then these 
disturbances must satisfy the 1-D homogeneous wave equation: 
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Fig. D.3. A plane wave traveling along the x1-direction. 

 
Fig. D.4. A plane wave traveling in a general direction, n, in three dimensions. 

 

2 2

2 2 2
1

1 0,p p
x c t

∂ ∂
− =

∂ ∂
 (D.8)

which has general solutions of the form ( ) ( )1 1/ /p f t x c g t x c= − + + . 
The f  function represents a wave traveling in the plus x1-direction while 
the g  function represents a wave traveling in the negative x1-direction, as 
shown in Fig. D.2. Consider the pressure wave ( )1 /p f t x c= − . The 
pressure in this 1-D wave is constant on the moving plane 1 /t x c constant− = , 
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so this is a plane wave traveling in the fluid (see Fig. D.3). Now, consider 
this plane wave traveling along an 1x′ -axis which is oriented along the n 
direction as shown in Fig. D.4 (n is a unit vector). Then this plane wave 
can be written as 

( )
( )

1 /

/ ,

p f t x c

f t c

′= −

= − ⋅x n
 (D.9)

which is the general expression for a plane wave traveling in the n-
direction in three dimensions, where here ( )1 2 3, ,x x x=x . It can be easily 
verified that this 3-D plane wave satisfies the full 3-D homogeneous wave 
equation for the fluid. Plane wave solutions are important types of waves 
since they can be used to model many of the wave propagation and wave 
interaction problems we encounter in ultrasonic NDE. An important 
special type of plane wave solution is a harmonic plane wave. For 
example, we can write a 1-D harmonic wave of frequency f (measured in 
Hz = cycles/sec) traveling in the x-direction as 

( ) ( )exp 2 / .p F f if x c tπ= ⎡ − ⎤⎣ ⎦  (D.10)

As discussed in Appendix A, such harmonic wave solutions can be used to 
synthesize an arbitrary traveling plane wave since we have the Fourier 
transform relationship 

( ) ( ) ( )/ exp 2 / ,f t x c F f if x c t dfπ
+∞

−∞

− = ⎡ − ⎤⎣ ⎦∫  (D.11)

where ( )F f is the Fourier transform of the function ( )f t . Thus, there is 
no loss in generality in considering harmonic plane wave solutions. We 
can write such 1-D harmonic plane waves in a number of forms. For 
example, we have 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

exp 2 /

exp

2exp

exp / ,

F f if x c t

F f ik x ct

iF f x ct

F i x c t

π

π
λ

ω ω

⎡ ± − ⎤⎣ ⎦
= ⎡ ± − ⎤⎣ ⎦

⎡ ⎤= ± −⎢ ⎥⎣ ⎦
= ⎡ ± − ⎤⎣ ⎦

 (D.12)
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where 2 fω π=  is the circular frequency (in rad/sec), /k cω= is the wave 
number (in rad/length) and 2 / /k c fλ π= =  is the wave length (in length/ 
cycle). The plus sign is for plane waves traveling in the positive x-direction 
and the minus sign is for waves traveling in the negative x-direction. A 
harmonic plane wave traveling in the plus n-direction in three dimensions 
can also be written in a number of forms. The most commonly used forms 
seen in the literature are  

( ) ( )
( ) ( )

exp

exp ,

F ik i t

F i i t

ω ω

ω ω

⋅ −

⋅ −

n x

k x
 (D.13)

where k=k n is a vector wave number. 
 Note, however, in all our forms we have used the time dependent 

factor ( )exp i tω− . Other authors may assume a factor ( )exp i tω+ or 
( )exp j tω+ instead (i = j = 1− ) . In that case, we must also change the 

( ) ( )exp 2 / )F f if x c tπ⎡ − + ⎤⎣ ⎦  represents a plane wave traveling in the 
positive x-direction.  

Also note that the last form in Eq. (D.13) can alternatively be 
written as 

( ) ( )exp .x y zF i k x k y k z tω ω⎡ ⎤+ + −⎣ ⎦  (D.14)

But we must have 2 2 2 2 2 2/x y zk k k k cω+ + = =  for Eq. (D.14) to represent a 
plane wave solution of the wave equation so we must have 

2 2 2
z x yk k k k= ± − −  where the plus sign would represent a plane wave 

traveling in three dimensions in the positive z-direction while the minus 
sign would give a wave traveling in the negative z-direction. In Chapter 8 
these forms arise when we discuss the use of plane waves to synthesize the 
wave field of an ultrasonic transducer. 

D.3 Waves in an Isotropic Elastic Solid 
 
The equations of motion for waves in an isotropic elastic solid can be 
obtained in the same manner as for the fluid. They are [Fundamentals], 
[D.1-D.3]: 

signs appropriately on the spatial terms as well. For example, 
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where ijτ  are the stresses, iu  the displacement components in the ix -direct-
ions, and ρ  is the density of the solid. The constitutive equations for an 
isotropic elastic solid are more complicated than that of a fluid. They are 
given by generalized Hooke's law: 
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only two independent material constants. Some authors instead may use as 
ν  is 

by 

( )( )

( )
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=
+ −
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If one places the constitutive equations into the equations of motion we 

( ) ( )
2

2
2 0,

t
µ λ µ ρ ∂

∇ + + ⋅ − =
∂

uu u∇ ∇  (D.18)

where u is the displacement vector. This vector will be written in terms of 
its scalar components as ( ) ( )1 2 3, , , ,x y zu u u u u u= ≡u .  

the independent constants E,ν , where E is Young’s modulus and 

obtain  Navier’s equations for the displacements. In vector form we have 

where λ, µ  are the Lame’ constants. For an isotropic elastic solid there are 

Poisson’s ratio. In terms of these constants the Lame’ constants are given 
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Fig. D.5. The displacements for P-waves and S-waves traveling in the n-direction 
in an isotropic elastic solid. 

D.4 Plane Waves in an Isotropic Elastic Solid 
 
Navier’s equations are not wave equations, but they do have plane wave 
solutions. However, unlike the fluid case, there are actually two types of 
plane waves possible in an isotropic, elastic solid. They are called plane  
P-waves and plane S-waves. The P-waves are also referred to as pressure, 
compressional, primary, longitudinal (L), dilatational, or irrotational 
waves. Similarly, S-waves are also called shear, secondary, transverse (T), 
distortional, equivoluminal, or rotational waves. Both of these waves are 
bulk waves since they travel throughout the volume of a solid. A bulk  
P-wave is by far the most commonly used type of wave in NDE testing. If 
one places a plane wave solution of the form ( )/ pU f t c= − ⋅u n x n in 
Navier’s equation (see Fig. D.5), that equation will be satisfied if  
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The quantities ,p sc c  are just the wave speeds for plane bulk P-waves and 
S-waves, respectively. For a structural material such as steel, for example, 
the P-wave speed is approximately 5900 m/sec while the S-wave speed is 
about 3200 m/sec, both of which are considerably larger than the wave 
speed for water (see Table D.1 for wave speeds and other properties of 
some selected materials). From Eqs. (D.19) and (D.20) we can see that the 

( )
( )
2 1

,
1 2

p

s

c
c

ν
ν

−
=

−
 (D.21)

which for many structural materials gives a ratio of about two to one. 

Table D.1. Acoustic properties of some common materials. 

Material P-wave  
speed 
[m/s x 103] 

S-wave  
speed 
[m/sx103] 

Density 
[kgm/m3x103] 

Impedance 
(P-wave) 
[kgm/(m2-s) x 106] 

Air        0.33           --         0.0012        0.0004 
Aluminum        6.42                 3.04         2.70          17.33 
Brass        4.70          2.10         8.64      40.60 
Copper        5.01          2.27         8.93      44.60 
Glass        5.64          3.28         2.24      13.10 
Lucite        2.70          1.10         1.15        3.10 
Nickel        5.60          3.00         8.84      49.50 
Steel, mild        5.90          3.20         7.90      46.00 
Titanium        6.10          3.10         4.48      27.30 
Tungsten        5.20          2.90       19.40    101.00 
Water        1.48            --         1.00        1.48 

 

)
u d= ×UIf we instead assume a plane wave solution that has the form 

n g
 order to satisfy Navier’s equations we find 

Fig.  D.5(b)), in, w here d is an arbitrary unit vector (see 

ratio of these wave speeds is just a function of Poisson’s ratio, i.e. 
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Fig. D.6. The polarizations of (a) P-waves, and (b) vertically polarized (SV) shear 
waves and horizontally polarized (SH) waves. 

As shown in Fig. D.5 (a), the direction of the displacement in the 
P-wave is along the direction of propagation, n, while for an S-wave 
(Fig. D.5 (b)), the displacement lies in the plane of the wave front, i.e. 
perpendicular to n. Thus, P-waves are said to have longitudinal polari-
zations while S-wave are said to have transverse polarizations. Figure D.6 
shows the polarizations for P-waves and S-waves and also shows that if 
the polarization (direction of motion) of the plane shear wave lies in a 
vertical plane, it is called an SV-wave (vertically-polarized shear), while 
 if the polarization lies in a horizontal plane it is called an SH-wave 
(horizontally-polarized shear). In general, an S-wave may have both vertical 
and horizontal polarizations combined. 

To solve wave propagation problems in elastic solids, many 
authors represent the displacement in terms of potential functions in the 
form 

 

,φ= + ×u ψ∇ ∇  (D.22)

where φ  is a scalar potential and ( ) ( )1 2 3, , , ,x y zψ ψ ψ ψ ψ ψ= ≡ψ is a vector 
potential. The advantage of using such potentials is that in order to satisfy 
Navier’s equations the potentials must satisfy the ordinary wave equations: 
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Equation (D.23) shows that the scalar potential, φ , represents P-waves 
while the vector potential, ψ , represents S-waves. In solving wave problems 
with potentials if the disturbance is two-dimensional where the displace-
ments ( ),x yu u  are the only non-zero displacements and they only depend 
on the x- and y-coordinates, only two potentials are needed: 

( )
( )
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and the displacements are given by 
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In this case the stresses are also given by 
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where /p sc cκ = . 
 For a harmonic plane P-wave traveling in the positive x-direction, 

as shown in Fig. D.7 (a), we can express the wave either in terms of its 
potential,φ , displacement, xu , velocity, xv or stress, xxτ : 
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Fig. D.7. The displacement, velocity and stress (a) for a plane P-wave, and (b) for 
a plane S-wave, both traveling in the x-direction. 
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where /p pk cω=  is the wave number for P-waves and the amplitudes are 
all related: 

x p

x x

xx p x

U ik
V i U
T c V

ω
ρ

= Φ

= −
= −

  (D.28)

 
For a harmonic plane S-wave we can also use the potential, ψ , displace-
ment, su , velocity, sv , or stress, xsτ , to describe the wave and we have 
instead (Fig. D.7 (b)): 
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where t is an arbitrary unit vector, xe  is a unit vector in the x-direction, 
( ) /x x= × ×s e t e t  is a unit vector in the plane of the wave front, and 

/s sk cω= is the wave number for shear waves. In this case the amplitude 
relations are 

s s

s s

xs s s

U ik
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T c V

ω
ρ

= Ψ
= −

= −
 (D.30)

To obtain these relations in the P-wave case we have used the fact that xu  
is the only non-zero displacement component in the wave and the only 
corresponding velocity component is /x xv u t= ∂ ∂ . In this case the 
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Similarly, in the S-wave case we have used the fact that the only non-zero 
displacement component in the wave is su , the displacement in the  
s-direction,  and so the only corresponding velocity component is also 

/s sv u t= ∂ ∂ . In this case the constitutive equation gives 

2 .

s
xs

s
s

u
x

uc
x

τ µ

ρ

∂
=
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=
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constitutive equation for the solid (generalized Hooke’s law) gives 
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Fig. D.8. A plane P-wave incident on a planar interface between two solids. 

D.5 Reflection/Refraction of Plane Waves – Normal 
Incidence 

As a simple but important example of the use of these plane wave relations, 
consider the reflection and transmission of a plane harmonic P-wave that 
strikes a planar interface between two solids at normal incidence as shown 
in Fig. D.8. The density and compressional wave speed in solids one and 
two are ( )1 1, pcρ , and ( )2 2, pcρ , respectively. The displacements of the inci-
dent, reflected, and transmitted plane waves are given by 
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where 1 1 2 2/ , /p pk c k cω ω= = . We have taken the reflected wave expression 
with a minus sign so that rU  represents the amplitude of a plane wave 
traveling in the –x-direction with polarization vector in the direction of 
propagation, i.e. the vector displacement of the reflected wave would be 
given by ( )1expr r rU ik i tω= ⋅ −u e e x  where r x= −e e , xx=x e . At the 
interface x = 0 the displacement xu and the stress 2 /xx p xc u xτ ρ= ∂ ∂  must 
be continuous so we find 
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Fig. D.9. The reflection coefficient (solid line) and transmission coefficient (dashed 
line) versus the impedance ratio 1 2/a az z . 

 

Continuity of displacement: i r tU U U− =   (D.34)

 

Continuity of stress: 1 1 1 1 2 2p i p r p tc U c U c Uρ ρ ρ+ =  (D.35)

Solving Eqs. (D.34) and (D.35) simultaneously we find 

1 1

1 1 2 2

2 2 1 1

1 1 2 2

2 pt
u

i p p

p pr
u

i p p

cUT
U c c

c cUR
U c c

ρ
ρ ρ

ρ ρ
ρ ρ

= =
+

−
= =

+

 (D.36)

where ( ),u uT R are the plane wave transmission and reflection coefficients 
(based on ratios of displacements). From Eq. (D.36) it follows that these 
reflection and transmission coefficients are dependent only on the specific 
acoustic impedances 1 1 1 2 2 2,a a

p pz c z cρ ρ= =
of these coefficients versus 1 2/a az z . 

. Figure D.9 plots the behavior 
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The limit 1 2/a az z → ∞  would correspond to the reflection from a 
free surface. In that case we see 1R → −  so that the total displacement 

i rU U−  at the interface in the first medium would be double that of the 
incident wave. The other limit where 1 2/ 0a az z →  would correspond to the 
wave incident on a very rigid boundary. In that case 1R →  so the total 
displacement at the interface in the first medium would be zero. For the 
special case where the acoustic impedances of the two solids are matched 
( 1 2/ 1a az z = ), we see that 0, 1R T= =  so that there is no reflected wave and 
the incident wave passes through the interface with its amplitude unchanged.  

 These same reflection and transmission coefficients could be used 
for the reflection of a plane S-wave at normal incidence to a solid-solid 
interface if we simply replace the compressional wave speeds by the 
corresponding shear wave speeds, i.e. 
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The coefficients could also be used for a fluid-fluid or fluid-solid interface 
(as encountered in immersion testing) by appropriately replacing the 
densities and wave speeds in Eq. (D.36) or Eq. (D.37). However, note that 
these coefficients are based on displacement ratios and if we want to use 
the ratios of other quantities we may have to make appropriate adjustments. 
To use velocity ratios, for example, we do not need to make any changes 
since 

.

r r r
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Equations (D.31) and (D.32) show that 2 /c u xτ ρ= ∂ ∂  is valid for either 
plane P-waves or S-waves in a solid if we use the appropriate τ , c and u in 
this relationship. Similarly, for a fluid we have 2 /p c u xρ= − ∂ ∂ . As mentioned 
previously, we combined these relations with the relationship between 
displacement and velocity, /v u t= ∂ ∂  to obtain the various plane wave 
amplitude relationships given by Eqs. (D.28) and (D.29). For a plane wave  
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traveling in the + x-direction with a stress amplitude, T, and velocity 
amplitude, V, we found T cVρ= − . For a pressure amplitude, P,  we found 
P cVρ= . Obviously, we can use these relations for the incident and trans-
mitted waves since they are both traveling in the + x-direction. However, 
because we placed the minus sign on the reflected wave in Eq. (D.33), we 
can also use these same relations for the reflected wave as well. Thus, if 
we define, for example, reflection and transmission coefficients based on 
stress ratios we would find (also using Eq. (D.38)) 

1 1 2 2 1 1
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which are also valid for reflection and transmission coefficients based on 
pressure ratios since there are then changes of signs in the coefficients 
shown in Eq. (D.39) in both the numerator and denominator that cancel. In 
the SI system the units of specific acoustic impedance are kgm/(m2-sec). 
This set of units is also called a Rayl, i.e. 1 Rayl = 1 kgm/(m2-sec). 

For water we have 61.5 10a
wz = ×  kgm/(m2 –sec) = 1.5 MRayls and 

for steel 646.0 10a
sz = ×  kgm/(m2 –sec) = 46 MRayls, so that for a plane 

wave traveling in water at normal incidence to a water-steel interface  uR  
= –0.937, uT = 0.06. Because of this high impedance mismatch, we see that 
in immersion testing most of an ultrasonic beam will be reflected back into 
the water at normal incidence.  

D.6 Reflection/Refraction of Plane Waves – Oblique 
Incidence 

When plane waves are incident on a plane interface at oblique incidence, 
there are additional aspects of the interactions that one does not see with 
the normal incidence case. Consider, for example, the simple problem of a 
plane wave at oblique incidence to a plane interface between two fluids, as 
shown in Fig. D.10, where 1 1, pcρ  are the density and compressional wave 
speed of medium 1 and 2 2, pcρ  are the corresponding density and wave 
speed for medium 2. Although this problem does not correspond to one  
we would likely see in NDE  testing, most of the physics involved in  more  
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Fig. D.10. A plane wave incident on an interface between two fluids. 

complicated plane wave interactions at fluid-solid and solid-solid interfaces 
are the same as in this problem [Fundamentals]. Here, the total pressure, 

1p , due the incident and reflected waves in medium 1 and the total pressure, 
2p , due to the transmitted waves in medium 2 are given by 
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From the equations of motion we have 
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 so that the total velocity, yv , in each medium is 
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 At the interface (y = 0), the boundary conditions are 
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so that we find (dividing out all common terms) 
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For these boundary conditions to be satisfied for all x along the boundary 
we must have the phase terms in Eq. (D.44) all match, which gives 

1 1 2sin sin sin .p i p r p tk k kθ θ θ= =  (D.45)

The first pair of these equations gives 

i rθ θ=  (D.46a)

while the second pair gives 

1 2

sin sin .i t

p pc c
θ θ

=  (D.46b)

Equation (D.46a) shows that the angle of incidence equals the angle of 
reflection while Eq. (D.46b) is a statement of Snell’s law for the 
transmitted angle in terms of the incident angle. Applying these phase 
matching conditions to Eq. (D.44), we obtain 
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These equations can be solved for the transmission and reflection coeffi-
cient (in terms of pressure) given by: 
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or, equivalently, in terms of velocity ratios (using P cVρ= ) 

1 1

1 1 2 2

2 2 1 1

1 1 2 2

2 cos
cos cos

cos cos
.

cos cos

p it
v

i p t p i

p i p tr
v

i p t p i

cVT
V c c

c cVR
V c c

ρ θ
ρ θ ρ θ

ρ θ ρ θ
ρ θ ρ θ

= =
+

−
= =

+

 (D.49)

These coefficients are functions of the acoustic impedances of the two 
media and the incident angle, iθ , since by Snell’s law 

2
22 2
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cos 1 sin 1 sin .p
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p

c
c

θ θ θ= − = −  (D.50)

At normal incidence we see that these results simply reduce to those found 
previously for that special case.  

 Equation (D.50) shows that when 1 2sin /i p pc cθ <  the cos tθ  term 
is real and both the reflection and transmission coefficients are merely real 
numbers. This condition is always true when the wave speed for the 
second medium is slower than that of the first medium since in that case 

1 2/ 1p pc c > . For the case when the second medium has a faster wave speed, 
however, the cosine term will only be real for a range of incident angles 
0 crθ θ≤ ≤ , where 

( )1
1 2sin /cr p pc cθ −=  (D.51)

is called the critical angle. For incident angles exceeding this critical 
angle, the reflection and transmission coefficients will become complex. In 
fact these coefficients will also become frequency dependent. To see this, 
consider Eq. (D.40). From that equation we see that the only exponential 
term affected by the critical angle is in the transmitted wave pressure term 
where cos tθ  appears. That term is 

( )2 2exp sin cos / .t t t pp P i x y c i tω θ θ ω⎡ ⎤= + −⎣ ⎦  (D.52)
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Fig. D.11. (a) The incident wave front, showing its propagation in a time ∆t, and 
its apparent wave speed 1 / sinp ic c θ=  along the interface ; (b) the corresponding 
reflected wave front and its apparent wave speed 1 / sinp rc c θ=  along the interface; 
(c) the transmitted wave front and its apparent wave speed 2 / sinp tc c θ=  along 

all three waves. 

Beyond the critical angle we can let 
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and Eq. (D.52) becomes 
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where 
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2 2
2

1

sin 1p
i

p

c
c

γ θ= −  is a real constant and 2 1/ sin / sinp t p ic c cθ θ= =  

is the apparent wave speed along the interface of  all the waves (incident, 
reflected, and transmitted) as shown in Fig. D.11. From Eq. (D.54) the 
transmitted pressure will be a wave traveling along the interface with wave 
speed c and an amplitude that varies exponentially in y. However, this 
amplitude physically must decay to zero as y becomes infinitely large for 
all  frequencies, ω , both  positive  and  negative,  so  we  must  choose  the 
 

the interface. By Snell’s law, the wave speed, c, along the interface is the same for 
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Fig. D.12. An inhomogeneous wave traveling along the interface. 

positive sign in Eq. (D.54) for 0ω >  and the negative sign in Eq. (D.54) 
for 0ω < , i.e. we must let 

2
22 2

2
1

cos sgn sin 1 sgn sin 1p
t t i

p

c
i i

c
θ ω θ ω θ= − = −  (D.55)

where 

1 0
sgn .

1 0
ω

ω
ω

+ >⎧
= ⎨− <⎩

 (D.56)

With this choice then the transmitted pressure is given by 

[ ]2

2
2 2

22
1

exp exp /

exp sin 1 exp sin / ,

t

p
t i t p

p

p P y i x c i t

c
P y i x c i t

c

ω γ ω ω

ω θ ω θ ω

⎡ ⎤= − −⎣ ⎦
⎡ ⎤
⎢ ⎥ ⎡ ⎤= − − −⎣ ⎦⎢ ⎥⎣ ⎦

 (D.57)

which represents an inhomogeneous wave traveling along the interface and 
decaying exponentially into the second medium as shown in Fig. D.12. 
Beyond the critical angle, both the transmission and reflection coefficients 
are complex and frequency dependent because the cos tθ  appearing in 
those coefficients is given by Eq. (D.55). When we consider an incident 
plane pulse and use these reflection and transmission coefficients and 
Fourier transforms to obtain the reflected and transmitted pulses at the 
interface, the frequency dependency in these coefficients will lead to 
reflected and transmitted waves that do not have the same shape as the 
incident waves, a phenomenon called pulse distortion. Note that below the 
critical  angle, a  reflected  or transmitted  wave  pulse  will  have  different 
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Fig. D.13. A plane wave in a fluid incident on a fluid-solid interface at oblique 
incidence. 

amplitudes from the incident wave but will have exactly the same shape 
waveform as that of the incident wave.  

 Although we have only considered a fluid problem here, the behavior 
of plane waves at solid interfaces is very similar. Consider, for example, 
the reflection and transmission of a plane wave in a fluid at a fluid-solid 
interface, as would be encountered in immersion testing (Fig. D.13).The 
main difference between this case and the fluid-fluid case just considered 
is that the plane P-wave in the fluid generates both plane P- and SV-waves 
in the solid. The generation of a wave type by a different wave type is 
called mode conversion. The angles of each of the waves are given here by 

the fluid equal to the incident P-wave angle, as shown in Fig. D.13, and we 
have 

1 2 2

1 2 2

sin sin sin ,p p s

p p sc c c
θ θ θ

= =  (D.58)

where 1pc  is the compressional wave speed of the fluid and 2 2,p sc c  are the 
compressional and shear wave speeds of the solid, respectively. Another 
difference from the fluid-fluid problem is that in this case there can be two 
critical angles. Above the first critical angle ( ) ( )1

1 1 21
sin /p cr p pc cθ θ −= =  

the transmitted P-wave becomes an inhomogeneous P-wave traveling 
along the interface and there is only a transmitted SV-wave, as shown in 
Fig. D.14 (a). Such a  critical angle will exist as long as the  compressional  
 

generalized Snell’s law so that we have the angle of the reflected P-wave in 
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Fig. D.14. (a) The case when the incident angle is greater than the first critical 
angle and (b) the case when the incident angle is greater than the second critical 
angle. 

wave speed of the solid is larger than the compressional wave speed of the 
fluid ( 2 1p pc c> ), which is satisfied for water and most structural materials. 
Above the second critical angle ( ) ( )1

1 1 22
sin /p cr p sc cθ θ −= = the SV-wave 

also becomes an inhomogeneous wave as shown in Fig. D.14 (b). This 
critical angle will exist if the shear wave speed in the solid is larger than 
the compressional wave speed of the fluid ( 2 1s pc c> ), which again is nor-
mally satisfied for water and most common structural materials. 

 The fluid-solid interface problem can be solved in manner similar to 
the fluid-fluid problem to obtain the plane wave reflection and transmission 
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Fig. D.15. The polarization directions chosen for the reflected and transmitted 
waves. 

coefficients. The transmission coefficients, for example, (based on velocity 
ratios) are given by: 

( )2
1 2;
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with 
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s s p p
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 (D59.b)

Both transmission coefficients are given in the form ;
12T α β , which denotes a 

transmission from medium 1 to medium 2 of a plane wave of type α 
( ),P SVα = due to an incident plane wave of type β ( )Pβ = . The signs of 

 

these coefficients  depend on the specific choice  made for the  polarization 
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Fig. D.16. The magnitude of the plane wave transmission coefficients at a water-
steel interface. 

 
Fig. D.17. The magnitude of the plane wave transmission coefficients at a water-
steel interface for incident angles below the second critical angle. 
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Fig. D.18. The phase (in radians) versus incident angle of the transmission 
coefficients at a water-steel interface. 

directions of the transmitted P- and SV-waves. Here, the polarization 
directions are chosen as shown in Fig. D.15. When the shear wave speed 

2 0sc → , ;
12 0SV PT →  and ;

12
P PT  is the same transmission coefficient found 

previously for the fluid-fluid problem (see Eq. (D.49)). Figure D.16 shows 
a plot of the magnitude of these transmission coefficients versus the 
incident angle for a water-steel interface. Because of the relatively large 
values of these coefficients near the second critical angle, it is useful to 
consider only angles below that second critical angle, which is the range of 
most interest anyway since beyond the second critical angle there are no 
waves transmitted into the solid. Figure D.17 shows this expanded plot. 
The transmitted shear wave transmission coefficient is zero at normal 
incidence (incident angle = 0) where there is no mode conversion and 
increases almost linearly until near the first critical angle. The transmitted 
P-wave coefficient is small at normal incidence because of the large 
impedance mismatch between the water and steel and is almost constant 
until near the first critical angle. For angles near the first critical angle, 
both coefficients change rapidly in their magnitudes. Figure D.18 shows 
the corresponding behavior of the phase of the transmission coefficients 
for angles below the second critical angle. The phase of the transmitted P-
wave is zero below the first critical angle because the coefficient is real. 
There is a phase jump of π radians at an incident angle of about 
18.0 degrees (Fig. D.18) where the  transmission coefficient changes  sign. 
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Fig. D.19. An angle beam transducer setup. 

The phase of the transmitted SV-wave is π radians below the critical angle 
because the transmission coefficient is real but negative, i.e. the velocity of 
the transmitted wave is opposite to the assumed polarization direction 
shown in Fig. D.15.  

As discussed in Appendix E, in angle beam testing a P-wave 
transducer is placed on a solid wedge which in turn is in contact with a 
solid that is to be inspected (see Fig. D.19). In this case a thin fluid 
couplant layer exists between the wedge and the underlying solid to 
guarantee that there is a good acoustic coupling between the wedge and the 
solid. If we neglect the thickness of the couplant layer then we can model 
this setup as two elastic solids in “smooth” and direct contact with each 
other where the shear stress must vanish at the wedge-solid boundary. In 
this case the transmission coefficients are given by [Fundamentals] 

( )( )

( )

2 2
1 2 1;

12
1 2

2
2 1 2 1;

12
1 2

2cos 1 2sin 1 2sin

4sin cos cos 1 2sin

p s sP P

s p p sSV P
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θ θ θ

θ θ θ θ

− −
=

∆ + ∆

− −
=

∆ + ∆

 (D.60)

where 
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Fig. D.20. The plane wave transmission coefficients for a Lucite-steel interface 
where 3

1 1.18 /gm cmρ = , 3
2 7.9 /gm cmρ = , 1 2670 / secpc m= , 1 1120 / secsc m= , 

2 5900 / secpc m= , 2 3200 / secsc m= . 
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and 
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Again, these transmission coefficients are based on velocity ratios and the 
polarization directions are the same as shown in Fig. D.15. If we let the 
shear wave speed in the wedge ( 1sc ) go to zero in these expressions, then 
these transmission coefficients simply reduce to those for fluid-solid case. 
The magnitudes of these coefficients are plotted versus angle of incidence 
in Fig. D.20 for a  Lucite (plexiglass) wedge in smooth contact  with  steel. 
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Fig. D.21. Pulse-echo immersion testing showing the transmission and reception 
of sound from a flaw along a completely reversed path through an interface. 
 
Comparing Figs. D.17 and D.20 we see that the absolute magnitudes and 
critical angles are different in the two cases because of the wave speed 
differences but the overall behavior of the curves are very similar.    

 All the transmission and reflection coefficients discussed so far have 
been based on amplitude ratios. It is also possible to define similar coeffi-
cients that use energy intensity ratios instead. It can be shown that the wave 
intensity, I, which is defined as the average power flux (power/unit area) in 
a harmonic pressure wave in a fluid (where the average is carried out over 
one complete cycle of the wave) is given by [Fundamentals] 

22

,
2 2

p

p

c VPI
c

ρ
ρ

= =  (D.62)

where ρ is the density of the fluid, pc  is the compressional wave speed 
and P, V are the pressure and velocity amplitudes, respectively. Similarly, 
for harmonic plane waves in a solid we have for P-waves 

22

,
2 2

p nnn

p

c VTI
c

ρ
ρ

= =  (D.63)

where ,nn nT V  are the normal stress and velocity amplitudes, respectively, 
and pc  is the P-wave speed. For shear waves 
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Fig. D.22. (a) Transmission coefficients when going from a fluid to a solid, and 
(b) the corresponding transmission coefficients for a completely reversed path 
going from the solid to the fluid. 

2 2

,
2 2

ns s s

s

T c VI
c

ρ
ρ

= =  (D.64)

where ,ns sT V  are shear stress and velocity amplitudes, respectively, and sc  
is the shear wave speed.  

 In pulse-echo NDE immersion testing the same transducer is used 
as both a transmitter of sound and a receiver, as shown in Fig. D.21. In an 
ultrasonic flaw measurement, for example, if the waves transmitted to a 
flaw involve a transmission coefficient ;

12
PT α ( ),P SVα = going from 

medium 1 (the fluid)  to  medium 2  (the flawed solid), the received  waves 
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Fig. D.23. A spherical wave arising from a symmetrical point source in a fluid. 

from the flaw will involve a transmission coefficient ;
21
PT α going from 

medium 2 back to medium 1 along a completely reversed path, as shown. 
These transmission coefficients, however, are related to each other through 
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D.7 Spherical Waves 

A spherical wave, like a plane wave, is a special wave type that is very 
useful for describing the scattering properties of flaws and for constructing 
more general waves, including the waves generated from ultrasonic 
transducers [Fundamentals]. First, examine a spherical wave in a fluid. If 
we consider harmonic waves where the pressure, p, and velocity v, are 
given by  

( ) ( ) ( )
( ) ( ) ( )

, , exp

, , exp

p t p i t

t v i t

ω ω

ω ω

= −

= −

x x

v x x
 (D.66)

then the equation of motion for the fluid (recall Eq. (D.3)) is 

( ) ( ), ,p iω ω ω=x v x∇  (D.67)

Stokes’ relations [Fundamentals], which are (see Fig. D.22): 



D.7 Spherical Waves      523 

and the wave equation for the pressure becomes the Helmholtz equation 

( ) ( )2 2, , 0,pp k pω ω∇ + =x x  (D.68)

where /p pk cω= .  
Consider a spherical wave in a fluid arising from a symmetrical point 

source as shown in Fig. D.23. Because of the symmetry, the equations of 
motion and the Helmholtz equation in spherical coordinates that describe 
this spherical wave are given by 

r
p i v
r

ωρ∂
=

∂
 (D.69)

and 
2 2

2 2

2 0,p p p
r r r c

ω∂ ∂
+ + =
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 (D.70)

where rv  is the radial  velocity. There are two solutions of Eq. (D.70) 
given by 

( ) ( )0 0
1 2exp exp ,p p

r rp P ik r P ik r
r r

= + −  (D.71)

where 1 2,P P  are pressure amplitudes and 0r  is a constant reference radius. 
The first of these solutions represents a wave moving outwards from the 

source while the second moves toward the source. Since the source only 
generates outward-going waves we must set 2P = 0. Letting 1P P=  we find 
the pressure and velocity (using Eq. (D.69)) are 
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( ) ( )

0

0 0

exp

exp11 exp .

p

p
r p

p p

rp P ik r
r

ik rPr rv V ik r
c ik r r rρ

=

⎡ ⎤
= − =⎢ ⎥

⎢ ⎥⎣ ⎦

 (D.72)

Unlike plane waves we see from Eq. (D.72) that the pressure amplitude, P, 
and velocity amplitude, V, of spherical waves are not just proportional to 
each other. However, at high frequencies (i.e. 1pk r >> ), we have approxi-
mately 
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Fig. D.24. Spherical P- and S-waves from a point source in an elastic solid. 
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so that P and V do just satisfy the plane wave relation pP c Vρ= . In many 
ultrasonic NDE problems the frequencies and distances are large enough 
so that this high frequency approximation is valid.  

 In elastic solids one can also look for point source solutions to 

case because the sources of interest are usually not symmetric and there 
can be spherically spreading P-waves and S-waves that are coupled 
[Fundamentals]. However, at high frequencies, one can treat the waves 
from a source in a solid as separate traveling spherical waves, as shown  in 
 

Navier’s equations. The details are much more complicated than the fluid 
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Fig. D.25. Propagation of a plane wave in an attenuating medium. 

Fig. D.24 where the polarization of the P-wave, pd , is in the direction of 
propagation of the wave and the polarization, sd , of the shear wave is in a 
plane perpendicular to the propagation direction. 

 The displacement ( ) ( ) ( ), , expt i tω ω= −u x u x   in the solid is then given 
by 

( ) ( ) ( )
0 0

exp exp
, ,p s

p p s s

ik r ik r
U r U r

r r
ω = +u x d d  (D.74)

where in general ( )( ) ( )( ), , , , ,p p r s s rU U U Uθ φ ω θ φ ω= =e e , i.e. the 
amplitudes are angular dependent, where ,θ φ  are the spherical coordinates 
defining  a radial unit vector, re , pointing in the direction of propagation 
as shown in Fig. D.24. 

D.8 Ultrasonic Attenuation 

All of the wave propagation models discussed in this Appendix have been 
for ideal, lossless media. At ultrasonic frequencies, however, there are 
material dependent losses that cause waves to attenuate as they propagate. 
Generally, the sources of the attenuation can be very complex. In metals, 
for example, attenuation can be due to scattering of the wave from the 
grain structure of the solid. One can use models to describe in some detail 
those scattering processes, but in most cases one can characterize the 
attenuation losses in a simpler, ad hoc fashion [Fundamentals].  Consider, 
for example, a plane wave traveling through an attenuating medium as 
shown in Fig. D.25. The amplitude of this wave will change as it propagates 
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Fig. D.26. A measurement setup for determining the attenuation of P-waves in the 
solid block. 

agates. We will model the effects of attenuation by an exponential factor 
that contains a frequency dependent attenuation coefficient, ( )fα , and 
express the amplitude changes in the form 

( )1

0

exp ,A f d
A

α= ⎡− ⎤⎣ ⎦  (D.75)

where d is the distance traveled in the medium. This attenuation coefficient 
is measured in Nepers/unit length (Np/l), where a Neper (Np) is a 
dimensionless quantity. It is also common to express the attenuation in 
terms of decibels/unit length (dB/l). To convert from Np/l to dB/l we have 
the relationship 

/ /8.686 .dB l Np lα α=  (D.76)

The attenuation of water as a function of temperature has been measured. 
At room temperature, the attenuation of water is [Fundamentals] 

( ) 3 225.3 10 / ,w f f Np mα −= ×  (D.77)

where f is the frequency in MHz. Equation (D.77) is convenient to use to 
characterize the attenuation in the water tank of immersion studies. 
However, for other materials, such as metals, the attenuation is highly 
dependent on the material processing the metal has undergone so that 
tabulated values are generally not available and the attenuation must be 
measured. A convenient setup for making attenuation measurements is one 
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of the calibration setups discussed in Chapter 5 and shown in Fig. D.26. A 
planar transducer is used in a pulse-echo immersion arrangement to 
measure the waves reflected at normal incidence from both the front 
surface and back surface of a solid block whose P-wave attenuation is to 
be determined. As shown in Chapter 7 the frequency components of the 
received voltage from the front surface, ( )fsV ω , and the frequency compo-
nents of the voltage received from the back surface, ( )bsV ω , can be expressed 
in the form 

( ) ( ) ( )
( ) ( ) ( )

fs
f s A

bs
b s A

V s t

V s t

ω ω ω

ω ω ω

=

=
 (D.78)

where ( )s ω  is the system function of the measurement system that accounts 
for all the electrical and electromechanical components (pulser/receiver, 
cabling, transducer) and ( ) ( ),fs bs

A At tω ω  are the acoustic/elastic transfer 
functions that account for all the wave processes, including attenuation, 
between the sending and receiving transducer. If both front and back 
surface measurements are done with the same components and at the same 
system settings, the system function is the same for both measurements, as 
indicated in Eq. (D.78).  

The front surface transfer function is given in Chapter 5. We write 
this transfer function as 

( ) ( ) ( ) 1exp 2 ,fs fs
A A wt t Dω ω α ω= ⎡− ⎤⎣ ⎦  (D.79)

where ( )wα ω  is the attenuation of the water and  ( )fs
At ω is the 

acoustic/elastic transfer function for the waves in the water without 
attenuation, given by (see Eq. (5.20)): 

( ) ( ) ( )2
1 1 12 1 1/ 2 exp 2 ,fs

A p p pt D k a D R ik Dω =  (D.80)

where 12R  is the plane wave reflection coefficient (Eq. (5.17)) for the fluid-
solid interface. The pD  coefficient is a diffraction correction (Eq. (5.20)) 
that accounts for the deviation of the waves in this setup from plane waves. 
In a similar manner, we can write the acoustic/elastic transfer function for 
the waves reflected from the back surface of the block as a transfer 
function for ideal materials, ( )bs

At ω , multiplied by an attenuation term to 
account for the attenuation of the waves in both the water and the solid 
[Fundamentals]:  
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( ) ( ) ( ) ( )1 2 2exp 2 2bs bs
A A w pt t D Dω ω α ω α ω⎡ ⎤= − −⎣ ⎦  (D.81)

with a loss free transfer function given by 

( ) ( ) ( )2
1 12 21 21 1 1 2 2/ 2 exp 2 2 ,bs

A p p p pt D k a D T R T ik D ik Dω = +  (D.82)

where ( )2pα ω is the attenuation coefficient for P-waves in the solid, 21R is 
the reflection coefficient from the back face (solid-fluid interface) of the 
block,  12T  is the plane wave transmission coefficient at normal incidence 
(based on a pressure ratio) in going from the fluid to the solid, and 21T  is 
the corresponding transmission coefficient in going from the solid to the 
fluid. The distance, D , is given by 

2
1 2

1

p

p

c
D D D

c
= +  (D.83)

and 1 2,p pc c  are the P-wave speeds of the fluid and the solid. It follows 
from Eqs. (D.78), (D.79) and (D.81) that 
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or, equivalently 

( ) ( )
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( )2 2exp 2 .
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V t
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V t
ω ω

α ω
ω ω

⎡ ⎤ =⎣ ⎦  (D.85)

By measuring the received voltages for the front and back surface 
reflections from the block and using the known acoustic/elastic transfer 
functions in Eq. (D.85), one can solve for the attenuation coefficient as a 
function of frequency. Notice that the attenuation of the water is not 
needed as the water attenuation term is the same for both the front and 
back surface responses. So it cancels out in Eq. (D.85). Similarly, one does 
not need the system function since it also cancels out. Normally, the 
attenuation coefficient is fitted to a simple polynomial function (in 
frequency) over the bandwidth of the measurement. If the attenuation is 
needed over a wider range of frequencies, measurements with other 
transducers are needed. The setup of Fig. D.26 is suitable for measuring 
the attenuation of P-waves in the solid. However, in order to determine the  
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Fig. D.27. A plane P-wave incident on a rough interface. 

attenuation of S-waves in the solid would require a different setup involving 
shear-wave transducers. 

Introducing attenuation in this ad-hoc manner works well in describ-
ing attenuation effects when the attenuation is not too severe. For highly 
attenuating materials, however, the wave speed as well as the amplitude of 
the waves is affected by the attenuation, leading to material dispersion effects 
where this simple method of characterizing the attenuation is inadequate.  
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D.10 Exercises 

1. Consider the case where a solid is split along a rough planar interface 
which lies in the plane x = 0 as shown in Fig. D.27. The two parts of the 
solid are in contact over some places on the interface and are not in contact 
at other places. Where the two sides touch the stress xxτ  is continuous, and 
where the sides do not touch 0xxτ = (on both sides) so again the stress is 
continuous. Where the sides touch the displacement xu  is continuous but 
where  the  sides  do  not  touch  there  can  be a  displacement of  one  side 
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Fig. D.28. A measurement setup for ultrasonically examining a partially closed 
crack. Note that the crack extends across the entire width of the block. 

relative to another. It is reasonable to expect that the amount of this 
relative displacement is proportional to the stress at the interface. Thus, 
under these conditions, we could expect that we might specify boundary 
conditions on the interface as: 

 
continuity of stress: 

( ) ( )0 , 0 ,xx xxx t x tτ τ− += = =  

stress proportional to the relative displacement: 

( ) ( ) ( )0, 0 , 0 , .xx s x xx t u x t u x tτ κ + −⎡ ⎤= = = − =⎣ ⎦  

The constant sκ determines the relative “springiness” of the interface. The 
case sκ = 0 corresponds to a stress free interface (no transmission) while 

sκ → ∞ means that the displacement is also continuous so that we have 
perfect contact and complete transmission (no reflection).  

 
(a) Determine the reflection and transmission coefficients (based 

on stress ratios) for a P-wave at normal incidence to this rough interface 
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and plot the magnitude and phase of these coefficients versus frequency 
from 0-20 MHz for steel with 150sκ =  MPa/µm. 

 
(b) The magnitude of transmission coefficient, T, you obtain in 

part (a) should be of the form , ( ) 2 21/ 1T f C f= + , where f is the 
frequency and the constant C is related to sκ   and pcρ . We could use this 
transmission coefficient to try to estimate the effects of crack closure of a 
rough crack as follows. Figure D.28 shows a compact tension specimen 
which is used to grow a through-thickness crack from a starter notch. If the 
compact tension specimen is then loaded, the sides of this rough crack will 
touch at some points and not at others, so the crack surface will look like 
two rough surfaces in partial contact, the same problem as shown in 
Fig. D.27. Suppose we now examine this crack with a through-
transmission immersion ultrasonic experiment, as shown in Fig. D.28, and 
also do a reference experiment where we move the transducers laterally so 
that they are not over the crack. Let ( )cV f  be the frequency components 
of the measured voltage for the case when we are over the crack, and let 

( )rV f  be the frequency components of the measured voltage for the 
reference experiment, Since the only difference between two setups is the 
transmission coefficient at the crack, we expect that the voltages to satisfy 

( ) ( ) ( )c rV f T f V f= . The MATLAB function rough_crack gives the 

 
>> [ vc, vr, t] =rough_crack 

 
Using this function, obtain the measured transmission coefficient, 

( )T f , versus frequency [ Note: if you want to use a Wiener filter here, the 
numerical round off “noise” is extremely small so choose a small constant 
value such as 0.001ε =  or smaller]. Using this transmission coefficient, 
determine a best fit value of C, and the corresponding value of sκ  (in 
MPa/µm), which is a measure of how closed the crack is. Assume the 
compact tension specimen is made of steel whose specific plane wave 
impedance is az = 46x106  kg/(m2-sec). 

 
2. A 6 mm thick aluminum plate is immersed in water and an immersion 
transducer  is  placed  in  the water  at  normal incidence  to this  plate. The 
 

sampled received voltage versus time, vc, for the case when the transducers
are placed over the crack, the sampled voltage versus time, vr, for the refer-
ence setup, and the sampled time values, t. The function call is: 
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Fig. D.29. A transducer sending multiple pulses through an aluminum plate. 

pulse generated from the transducer will pass through the plate and also be 
multiply reflected within the plate many times, causing a series of 
transmitted pulses to appear on the other side of the plate (see Fig. D.29). 
If we assume that the transducer beam incident on the plate acts as if it 
were a plane wave of pressure amplitude A, what would be the pressure 
amplitudes of the first three transmitted pulses (in terms of A) and what 
would be the time separation between them? For the water take 1 1ρ =  
gm/cm3 , 1pc = 1480 m/sec and for the aluminum take 2ρ = 2.7 gm/cm3, 

2pc = 6420 m/sec. 
 
3. The stress-strain (constitutive) relations for an isotropic elastic solid can 
be written as: 

( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

1
1 1 2

1
1 1 2

1
1 1 2

xx xx yy zz

yy yy xx zz

zz zz xx yy

xy xy

xz xz

yz yz

E e e e

E e e e

E e e e

τ ν ν
ν ν

τ ν ν
ν ν

τ ν ν
ν ν

τ µγ

τ µγ
τ µγ

⎡ ⎤= − + +⎣ ⎦+ −

⎡ ⎤= − + +⎣ ⎦+ −

⎡ ⎤= − + +⎣ ⎦+ −

=

=

=

 

where ( )/ 2 1Eµ ν= +  and the strains are given by 
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Fig. D.30. A compressional wave traveling in (a) a rod and (b) a plate. 

, ,

, , .

yx z
xx yy zz

y yx x z z
xy xz yz

uu ue e e
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γ γ γ

∂∂ ∂
= = =

∂ ∂ ∂
∂ ∂∂ ∂ ∂ ∂

= + = + = +
∂ ∂ ∂ ∂ ∂ ∂

 

(a) If we consider a compressional wave propagating along a long 
slender rod as shown in Fig. D.30 (a), it is reasonable to assume that 

( ),x xu u x t=

0yzτ= = ). The equations of motion in this case become simply 

2

2 .xx xu
x t

τ
ρ

∂ ∂
=

∂ ∂
 

Use the stress-strain relations and the conditions 0yy zzτ τ= =  to determine 
the relationship between xxτ  and /xx xe u x= ∂ ∂  for this case.  What is the 
wave speed for compressional waves in the rod? 

 

xxτ ( yy zz xy xzτ τ τ τ= = = and that the only non-zero stress is 
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(b) Now consider a compressional wave traveling in a plate as 
shown in Fig. D.30 (b). In this case it is reasonable to assume 

0zz xy xz yzτ τ τ τ= = = =  and 0yye = . If again we assume ( ),x xu u x t=  the 
equation of motion for the plate is the same as for part (a). Use the stress-
strain relations and the conditions 0zz yyeτ = = to again determine the 
relationship between xxτ  and /xx xe u x= ∂ ∂  for this case. What is the wave 
speed for compressional waves in the plate? For steel (take E = 210 GPa, 
ν = 0.3, ρ = 7.9x103 kgm/m3 ) how does the compressional rod wave 
speed and plate wave speed compare to the wave speed for bulk 
compressional waves? 

 
4. A plane wave travels 100 mm in a material to a point where its 
amplitude is 1P . After the wave travels through an additional 100 mm of 
material its amplitude is reduced to 2 10.45P P= . What is the average 
attenuation of this material in dB/m? 
 
5. A transducer beam spreads as it propagates. In the far-field of the 
transducer this spreading is just like that of a spherical wave, i.e. the 
amplitude varies as 1/r where r is the distance from the transducer. At a 
distance of 100 mm from the transducer the amplitude of the pressure is 1P . 
After the beam has propagated another 100 mm the amplitude is reduced 
to 2 10.45P P= . What is the average attenuation of the material in dB/m, 
assuming that at both of these distances we are in the transducer far-field? 
 
6. Consider a harmonic plane P-wave traveling in water at room 
temperature. Determine an expression for the distance (as a function of the 
frequency, f ) that this wave must travel (in meters) to reduce its amplitude 
by 10% due to attenuation. Plot this function from f = 1 MHz to 
f = 20 MHz. 
 
7. The reflection and transmission coefficients (based on stress ratios) for a 
plane P-wave wave at normal incidence to a plane interface between two 
elastic solids were given by Eq. (D.39). Determine the corresponding 
transmission and reflection coefficients based on ratios of the energy 
intensities (see Eq. (D.63)). Plot these intensity-based coefficients versus 
the impedance ratio of the two solids, as done in Fig. D.9.What is the sum 
of these intensity-based reflection and transmission coefficients? 
 



E Waves Used in Nondestructive Evaluation 

Bulk P-waves and S- waves are the types of waves most frequently used in 
NDE testing. Thus, the wave propagation models developed in Appendix D 
and in Chapters 8-12 are all bulk wave models. In this Appendix we discuss 
some of the issues associated with the generation of bulk S-waves in solids 
and briefly describe surface (Rayleigh) and plate waves since these wave 
types also have important NDE applications. 

E.1 Shear Waves 

Many ultrasonic nondestructive evaluation inspections are performed with 
P-wave transducers operating either in a contact mode or in immersion 
testing. It is also possible to have a piezoelectric crystal generate a 
shearing motion when it is excited by a voltage pulse and use that shearing 
motion to launch a shear wave into a solid component in a contact setup as 
shown in Fig. E.1. In order to couple the motion of the crystal to the solid, 
however, the shear wave transducer must be attached to the solid in a 
permanent or semi-permanent fashion. Highly viscous shear wave 
couplants or glues can be used for this purpose, but the transducer is then 
not able to be scanned along the surface which greatly limits the usefulness 
of such a shear wave setup. As a consequence, most shear waves are 
instead generated through the process of mode conversion from a P-wave 
to an SV-wave at oblique incidence to an interface. This is the basic 
mechanism used in an angle beam shear wave transducer, as shown in 
Fig. E.2. An ordinary P-wave type of crystal and backing is placed on a 
plastic wedge. The P-wave this crystal generates strikes the interface 
between the wedge and the solid to be inspected at oblique incidence. If 
the incident angle in the wedge is chosen so that the first critical angle in 
the solid is exceeded, then only a transmitted SV-wave propagates into the 
solid as shown in Fig. E.2. The angle of propagation of the shear wave in 
the solid is determined by generalized Snell’s law so that 

1
2 2 1 1sin sin /s s p pc cθ θ− ⎡ ⎤= ⎣ ⎦  (E.1)
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Fig. E.1. A contact shear wave transducer on the free surface of a solid showing 
the shear motion of the piezoelectric and the corresponding shear wave that is 
generated. 

Fig. E.2. An angle beam shear wave transducer on the free surface of an elastic 
solid. 

where 1pc  is the P-wave speed in the wedge, 2sc  is the shear wave speed in 
the solid, and 1pθ  is the angle that the P-wave in the wedge makes with the 
normal to the surface. Some refracted shear wave angles that are commonly 
used in practice are: 2 45 ,60 ,70sθ = . The angle beam shear wave trans-
ducer, like an ordinary P-wave contact transducer, can be coupled to  
the solid by a thin fluid layer so that it can be scanned along the surface. 
Angle beam shear wave transducers are often used for weld inspection 
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Fig. E.3. An angle beam shear wave inspection of a welded plate geometry using 
a directly generated SV-wave as shown on the right side of the weld or a SV-wave 
reflected from a back surface as shown on the left side. 

 
Fig. E.4. A Rayleigh wave transducer on the free surface of an elastic solid. 

problems as shown in Fig. E.3, where the entire weld zone can be probed 
by scanning the transducer along the surface and using either the SV-wave 
directly or a wave reflected from a back surface. Models of angle beam 
shear wave inspections are discussed in Chapter 13. 

E.2 Rayleigh Waves 

A transducer arrangement very similar to the angle beam shear wave case 
can also be used to generate Rayleigh surface waves, as shown in Fig. E.4 
[E.1]. In this case the angle of the incident P-waves in the wedge must be 
slightly larger than the second critical angle. Specifically, 
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1
1 1 2sin / ,p p rc cθ − ⎡ ⎤= ⎣ ⎦  (E.2)

where 2rc is the wave speed for Rayleigh waves in the solid. Typically the 
Rayleigh wave speed is about 90 per cent the shear wave speed. At this 
angle, there are only inhomogeneous P- and SV-waves generated in the 

wave travels along the stress free surface of the solid and decays in depth 
from the surface. Lord Rayleigh first discovered these waves by choosing 
P- and SV-wave potentials given by  [Fundamentals] 

[ ] ( )
[ ] ( )

exp exp

exp exp

A y ik x ct

B y ik x ct

φ α

ψ β

= − ⎡ − ⎤⎣ ⎦
= − ⎡ − ⎤⎣ ⎦

 (E.3)

which represent inhomogeneous waves propagating along the surface with 
the common wave speed , c. These waves must satisfy the wave equations 

2
2

2 2
2

2
2

2 2
2

1 0

1 0,

p

s

c t

c t

φφ

ψψ

∂
∇ − =

∂

∂
∇ − =

∂

 (E.4)

where 2pc  and 2sc  are the wave speeds for compressional and shear waves 
in the solid, respectively.  Also, these waves must satisfy the free surface 
(zero stress) boundary conditions which are 0yy xyτ τ= =  on y = 0. 
Rayleigh showed that potentials of the form given in Eq. (E.3) could be 
found that satisfy both the wave equations and the boundary conditions if 
 

2 2
2

2 2
2

/ 1 /

/ 1 /

p

s

c c c

c c c

α ω

β ω

= −

= −
 (E.5)

and the wave speed , c, is a root of the equation 

( )22 2 2 2 2 2
2 2 22 / 4 1 / 1 / 0.s p sc c c c c c− − − − =  (E.6)

Equation (E.6) is called the Rayleigh equation. It can be shown [E.3] that 
for an isotropic elastic solid there is always one real root of Eq. (E.5) 

2rc c= , where 2 2r sc c< , called the Rayleigh wave speed. Eq. (E.5) then 
shows  that  α  and β   are both real so that the  Rayleigh  wave  potentials 
 

solid which combine to form the Rayleigh wave mode. The Rayleigh 
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Fig. E.5. An angle beam transducer on a thin plate generating a series of reflected 
and mode-converted waves that combine to form a dispersive (frequency dependent) 
plate wave traveling with the wave speed ( )c c ω= . 

have an exponential decay in distance from the surface. A simple 
approximate expression for the Rayleigh wave speed is given by 

2 2
0.862 1.14 ,

1r sc cν
ν
+

≅
+

 (E.7)

where ν  is Poisson’s ratio.  
If one examines the displacements and stresses in the Rayleigh 

wave, one finds that like the potentials they also decay in depth from the 
interface but the decay is not a simple exponential behavior as given in 
Eq. (E.3). However, at high frequencies, these quantities are all confined 
near the surface while at lower frequencies they have deeper penetration. 
Thus, in an inspection with Rayleigh waves one can adjust the depth of the 
region one is interrogating by adjusting the frequency. Since they are 
confined to the surface Rayleigh waves are very useful for inspecting for 
surface flaws or near-surface flaws. Also, since Rayleigh waves travel and 
spread out in two-dimensions on the surface whereas bulk waves spread 
out in three-dimensions as they propagate through the volume of a material 
the amplitudes of Rayleigh waves do not decay as fast as bulk waves and 
they can travel long distances. 

E.3 Plate (Lamb) Waves 

If an angle beam shear wave transducer is placed on a thin plate, as shown 
in Fig. E.5, a series of reflected and mode converted waves are generated 
in the plate and these combine to form a new wave mode traveling with a 
wave speed, c ,  in  the  x-direction  called a  plate  (or  Lamb)  wave [E.2]. 
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Fig. E.6. (a) An extensional plate wave traveling in the x-direction in a thin plate 
and (b) a flexural plate wave traveling in the x-direction. The type of deformation 
present in each of these wave types is shown. 

Unlike bulk waves or Rayleigh waves whose wave speeds are just a function 
of material constants, ( )c c ω=  i.e. the wave speed of a plate wave is 
generally frequency dependent, a phenomenon called geometric dispersion. 
Actually as we will see there are many different plate waves that can be 
generated, each with a different frequency dependency.  

Plate waves are solutions of the wave equations for the potentials 
where we assume 

( ) ( )
( ) ( )

exp

exp .

f y ik x ct

g y ik x ct

φ

ψ

= ⎡ − ⎤⎣ ⎦
= ⎡ − ⎤⎣ ⎦

 (E.8)

In this case, we find that  

( )
( )

cosh

sinh

f A y

g B y

α

β

=

=
 (E.9)

or 

( )
( )

sinh

cosh ,

f A y

g B y

α

β

′=

′=
 (E.10)

where α  and β  are again given by Eq. (E.5). Solutions of the form given 
by Eq. (E.9) are extensional plate waves, while  those  given  by Eq. (E.10) 
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Fig. E.7. The phase velocity versus non-dimensional frequency (dispersion) 
curves. Extensional wave modes are labeled An and flexural modes are labeled Sn 
(n = 0, 1, 2…). 

are flexural plate waves. In general, we may have both types of waves 
generated. The extensional plate waves are waves with the symmetric 
thickness variations shown in Fig. E.6 (a) while the flexural plate waves 
generate a bending deformation of the plate as they propagate, as shown in 
Fig. E.6 (b). 

Both types of these plate waves must satisfy the boundary 
conditions 0yy xyτ τ= =  on y h= ±  which yields the Rayleigh-Lamb 
equations 

( )
( ) ( )

1
2

22 2 2 2

tanh 4 ,
tanh /

h
h c c

β ω αβ
α ω β

±
⎡ ⎤
⎢ ⎥=
⎢ ⎥+⎣ ⎦

 (E.11)

where the plus sign is for extensional waves and the negative sign for 
flexural waves. Solutions of Eq. (E.11) for the frequency dependent wave 
speed ( )c c ω= are rather complex and generally must be determined numeri-
cally. Plots of the wave speed versus frequency are shown in Fig. E.7 for a 
number of extensional and flexural wave modes.  

We can obtain some information on the behavior of these waves 
by noting that for sufficiently high frequencies we have ( )tanh 1hα = , 



542      Waves Used in Nondestructive Evaluation 

( )tanh 1hβ =  and the Rayleigh-Lamb equations for both extensional and 
flexural waves reduce to just our equation  for Rayleigh waves, Eq. (E.6). 
This is a reasonable result since at very high frequencies the two sides of 
the plate appear very far away from each other and the waves can propa-
gate independently on each side (as Rayleigh waves) as if the other side 
did not exist. Thus, all the curves in Fig. E.7 asymptote to the Rayleigh 
wave speed at sufficiently high frequencies. 

At low frequencies, one can also extract some explicit results from 
the Rayleigh-Lamb equation. For the lowest order extensional wave mode 
(see Fig. E.7), one finds [Fundamentals] 

( )21
Ec

ρ ν
≅

−
 (E.12)

which is the non-dispersive wave speed for extensional plate waves found 
from elementary plate theory. In contrast, the lowest order flexural mode at 
low frequencies produces a wave speed [Fundamentals] 

,
2

pD
c

h
ω

ρ
⎛ ⎞
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 (E.13)

where ( )
( )

38
3 2p

h
D

µ λ µ
λ µ
+

=
+

 is the flexural rigidity of the plate. In this case 

we see the flexural waves remain dispersive even at low frequencies. 
Plate waves are good candidates for inspecting thin plates and pipes 

and are frequently used in those applications [E.2]. The inherent dispersive 
nature of plate waves and the fact that one often simultaneously generates 
many different modes often makes inspections with these waves challenging 
from a data interpretation standpoint. 
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F Gaussian Beam Fundamentals 

A Gaussian beam is a very important type of propagating wave since it is 
an elementary wave that can be used as an efficient building block for 
constructing the more complex wave fields present in NDE inspections. 
Chapter 9 develops in detail the propagation and transmission/reflection 
laws for Gaussian beams in fluid and solid media. That Chapter also 
describes how a multi-Gaussian beam model of circular and rectangular 
piston NDE transducers can be constructed by superimposing only 10-15 
Gaussian beams. The Gaussian beam discussions and derivations given in 
Chapter 9, however, are inherently rather complex since they involve the 
types of Gaussian beams and beam interactions that are needed to model 
general NDE testing situations. In this Appendix we will discuss Gaussian 
beams in a much more restricted context in order to illustrate some of the 
important properties of this type of wave in as simple a manner as 
possible. Specifically, we will examine the propagation of a circularly 
symmetrical Gaussian beam in a fluid medium along a single coordinate 
direction and describe the interactions of that beam with spherical or 
planar interfaces that are normal to the propagation direction. Special cases 
of this type are commonly encountered when using Gaussian beams to 
represent the fields present in lasers, so we will also use a notation that is 
consistent with many references found in the laser science literature.  

F.1 Gaussian Beams and the Paraxial Wave Equation 

 
Let the pressure, p, of a propagating harmonic wave (of ( )exp i tω−  time 
dependency) be written in cylindrical coordinates ( ), zρ  in the form of a 
quasi-plane wave propagating in the z-direction, i.e. 

( ) ( ), , exp .p P z ikz i tρ ω ω= −  (F.1)
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This is called a quasi-plane wave because the amplitude, P, has variations 
in ( ), zρ while in a true plane wave P would be constant. Placing Eq. (F.1) 
into the wave equation (see Eq. (D.8)) then shows that P must satisfy  

2

2

1 2 0,p
P P Pik

z z
ρ

ρ ρ ρ
⎛ ⎞∂ ∂ ∂ ∂

+ + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (F.2)

where /p pk cω=  is the wave number. Note that this is an axially symme-
trical wave since there are no angular variations in the plane perpendicular 
to the z-axis. As discussed in Chapter 9 if Eq. (F.1) represents a wave 
disturbance propagating primarily in the z-direction we can assume that 
the 2 2/P z∂ ∂  term in Eq. (F.2) will be smaller than the other terms in that 
equation, leading to the paraxial wave equation for P given by [F.1], [F.2] 

1 2 0.p
P Pik

z
ρ

ρ ρ ρ
⎛ ⎞∂ ∂ ∂
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 (F.3)

The paraxial wave equation assumes that 
2

2

12 , ,p
P P Pik

z z
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ρ ρ ρ
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<< ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
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but since the magnitudes of both terms on the right side of Eq. (F.4) are 
always equal by virtue of the paraxial wave equation, it is sufficient to 
require only that 

2

2 2 .p
P Pik

z z
∂ ∂

<<
∂ ∂

 (F.5)

 
We will discuss the consequences of this inequality shortly. Now consider 
a Gaussian beam solution of Eq. (F.3) in the form  

( )2exp / 2 ,pP P ik qρ=  (F.6)

where ( )P P z=  and ( )q q z=  can both be complex-valued functions. 
Placing Eq. (F.6) into Eq. (F.3) gives 

2 2

22 1 0.p
p

k PP dP dqik
q dz q dz

ρ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟
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 (F.7)

 



F.1 Gaussian Beams and the Paraxial Wave Equation      545 

Since we must satisfy Eq. (F.7) for all ρ  we have 

1dq
dz

=   (F.8a)

and 

0.dP P
dz q

+ =  (F.8b)

The solution of Eq. (F.8a) is just the propagation law 

( ) 0q z z q= +  (F.9)

where 0q  is a complex constant (that can also depend on the frequency, 
ω ). Placing this solution into Eq. (F.8b) then also gives 

( ) ( )
0 0

0

.P PP z
z q q z

= =
+

 (F.10)

Thus, we see that a propagating Gaussian beam is given by  

( ) ( )
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 (F.11)

(where we have omitted writing explicitly the ( )exp i tω−  term, a convention 
we will follow throughout the remainder of this Appendix). To put this beam 
expression in a more understandable form, let the constant 0q  be represented 
in the form 

2
0

0 0 ,
p

i wq z π
λ

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
 (F.12)

where ( )0 0,z w have the dimensions of a length and 2 /p pkλ π=  is the 
wavelength. The distance 2

0 /c pz wπ λ=  is called the confocal distance (or 
confocal parameter). In terms of these parameters, therefore, the Gaussian 
beam is given by 
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Fig. F.1. A Gaussian beam of circular cross-section propagating in the z-direction, 
showing the wave front curvature and the beam width. The beam waist is located 
at 0z z=  where the beam width is 0w . The half angle divergence of the beam at a 
large distance from the beam waist is defined by the angle 1/ eθ . 
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Now, define a beam width parameter, ( )w z , and a beam wave front 
curvature parameter, ( )R z , as 
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 (F.14)

Then the Gaussian beam becomes 

( ) ( ) ( )( )
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Fig. F.2. A plot of the normalized beam width, 0/w w , and the normalized radius 
of curvature, / cR z , versus the normalized distance, ( )0 / cz z z− . 

Figure F.1 shows a side view of the Gaussian beam represented by 
Eq. (F.15) and Fig. F.2 shows a plot of both the normalized beam width 
and normalized curvature parameters. We see that the beam wave front 
curvature, ( )R z , is infinite at the location 0z z= . Therefore at that 
location the wave front of the Gaussian beam is planar. For 0z z>  the 
curvature is positive and the Gaussian beam is a diverging beam while for 

0z z<  the beam is a converging beam. From Eq. (F.15) we see that the 
amplitude of the Gaussian beam in the ρ -direction is a Gaussian function 
whose width is ( )w z , where the width is defined as the radial distance to 
which the beam amplitude drops by a factor 1e−  from its on-axis value. 
Figures F.1 and F.2 show that the minimum beam width also occurs at 

0z z=  which is called the location of the beam waist. At the beam waist 
from Eq. (F.14) it follows that ( )0 0w z w= .  

Physically, the confocal parameter 2
0 /c pz wπ λ=  is the axial 

distance from the beam waist to where the Gaussian beam remains 
reasonably well collimated (i.e. where the beam width is approximately a 
constant) [F.2]. This can be seen from Eq. (F.14) where at 0 cz z z− =  we 
find 01.414w w=  so that the beam width is only 40% larger than at the 
waist. However, at larger distances  from the  beam waist  the  beam  width 
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Fig. F.3. The normalized beam width versus normalized distance, ( )0 / cz z z−  and 
the corresponding asymptotic beam growth angle. 

grows considerably wider as the beam diverges. If we compute the half 
angle to the 1e−  width point in the beam, 1/ eθ , (see Figs. F.1 and F.3) 
where 

( )
( )

1 1 1
1/

0 0

lim tan tan tanp p
e z

c

w z
z z w z

λ λ
θ

π π
− − −

→∞

⎛ ⎞⎧ ⎫⎡ ⎤ ⎛ ⎞⎪ ⎪= = = ⎜ ⎟⎨ ⎢ ⎥⎬ ⎜ ⎟ ⎜ ⎟−⎢ ⎥ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭ ⎝ ⎠
 (F.16)

we see that if the wavelength, λ , is much smaller than the beam width, 0w , 
then the asymptotic beam growth angle, 1/ eθ , is very small. For example, if 
we consider a Gaussian beam with a waist size 0 3w =  mm radiating into 
water at 5 MHz, then the wavelength 0.3pλ =  mm and 1/ 1.8eθ =  degrees. 
This shows that a Gaussian beam of roughly the same size as an ultrasonic 
NDE transducer that propagates at MHz frequencies will be highly 
collimated. A typical NDE transducer beam at these frequencies also is 
highly collimated (see, for example, Fig. 8.3). It is this fact that makes it 
possible to take a relatively few Gaussian beams of different widths and 
waist locations and accurately synthesize the wave field of an NDE 
transducer, as shown in Chapter 9. In contrast, it takes a superposition of 
many more spherical waves or plane waves to model a transducer wave 
field since neither of those wave types are collimated beams like the 
Gaussian beam. 
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It is interesting to compare Eq. (F.15) with the paraxial approxi-
mation for the propagation of a spherical wave in the neighborhood of the 
z-axis. This case is examined in Chapter 9 as part of the discussion of the 
paraxial approximation. For such a spherical wave we have (see Eq. (9.6)) 

2

exp exp .
2
p

p

ikAp ik z
z z

ρ⎛ ⎞
⎡ ⎤= ⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
 (F.17)

Both Eq. (F.15) and (F.17) have a varying “amplitude” term, a plane wave 
propagation term, ( )exp pik z , and a phase term that is quadratic in the radial 
distance, ρ , from the propagation axis. In fact, we can view the Gaussian 
beam as representing a spherical wave propagating from a complex source 
point in the paraxial approximation [F.3]. Such complex point sources can 
be used as a means of forming wave solutions that do not rely on the 
paraxial approximation, but we will not discuss those solutions here. Note 
that if we let 0 0q =  in the Gaussian beam it reduces exactly to the spheri-
cal wave of Eq. (F.17).  

Whereas the amplitude of a spherical wave becomes infinite at the 
source location z = 0 (see Eq. (F.17), the Gaussian beam (see Eq. (F.15)) 
remains well behaved everywhere. In fact, as shown in Chapter 9, a Gaussian 
beam is never singular, even after propagation and reflection/refraction in 
multiple media. The same is not true for spherical or plane waves which at 
high frequencies can become singular at focal points or caustics after either 
of those wave types interact with curved interfaces. This non-singular 
behavior of Gaussian beams is also a feature of this wave type that makes 
it a better building block than spherical or plane waves to generate more 
complex wave fields.  

F.2 Quasi-Plane Wave Conditions and the Paraxial 
Approximation 

If the pressure is given by Eq. (F.11) then the velocity, zv , in the direction 
of the propagating Gaussian beam is given by 
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 (F.18)

where / 1q dq dz′ = = . We will now consider the conditions under which 
the magnitude of the first term on the right side of Eq. (F.18) is much 
larger than the other two terms. First consider the condition 

.p
q k
q
′
<<  (F.19)

This condition is equivalent to requiring that 

( )0 1.p p ck q k z z iz= − − >>  (F.20)

Because cq z≥ Eq. (F.20) will certainly be satisfied if we require the 
stronger condition 1p ck z >>  which gives 
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λ
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 (F.21)

Now consider the second condition 
2

2 .
2
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k q k
q

ρ ′
<<  (F.22)

Since most of the energy in a Gaussian beam is contained within a beam 
width, w, Eq. (F.22) will be satisfied for all ρ  within that distance if we 
set wρ =  in Eq. (F.22) and require 
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But since 0w w≥  Eq. (F.23) implies 
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<<       or, equivalently, 
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>>  
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Again, since cq z≥  the above inequality will certainly be satisfied if we 
require the stronger condition 

22
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2 2 1c

p

z w
w

π
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⎛ ⎞⎛ ⎞
= >>⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (F.24)

This is just the same result as obtained in Eq. (F.21). Thus, we see that as 
long as the beam waist size is much larger than a wavelength, the 
velocity, zv , in the Gaussian beam given by Eq. (F.18) reduces to 

,z
p

pv
cρ

=  (F.25)

which is a relationship also true for plane waves (see Appendix D). Thus, 
in terms of the pressure-velocity relationship we can view a Gaussian 
beam as behaving like a quasi-plane wave. 

These results are also useful for examining the requirement given 
by Eq. (F.5) for the paraxial approximation to be valid for a Gaussian 
beam. Since we have  

20 exp / 2p
PP ik q
q

ρ⎡ ⎤= ⎣ ⎦  (F.26)

it follows that 
2

2 .
2

dP q ik q P
dz q q

ρ′ ′⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (F.27)

But the terms appearing in the brackets in Eq. (F.27) are the same terms 
we have just analyzed, so under the same condition given by either 
Eq. (F.21) or Eq. (F.24) we have 

2 .p
dP k P
dz

<<  (F.28)

Using Eq. (F.28) we see that Eq. (F.5) can also be written as 
2

2
2 4 .p
P k P

z
∂

<<
∂

 (F.29)

If we differentiate Eq. (F.27) once more and assume that again Eq. (F.19) 
and (F.22) are satisfied for the terms of those forms that appear in the 
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2 2

remaining term we have 
22 4
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k q P k P
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<<⎜ ⎟

⎝ ⎠
 (F.30)

[The details are not given here as they are very similar to those just 
presented for proving Eq. (F.25)]. Thus, the paraxial condition of 
Eq. (F.29) becomes 

22

2 4
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q
q
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<<⎜ ⎟

⎝ ⎠
 (F.31)

which is certainly satisfied if we require 
22

2 1.
2

q
q

ρ⎛ ⎞′
<<⎜ ⎟

⎝ ⎠
 (F.32)

But if we take the square root of both sides of Eq. (F.32) we obtain 
Eq. (F.22) again so that the condition for the paraxial approximation to be 
valid for a Gaussian beam is once more either Eq . (F.21) or Eq. (F.24). 

We can also view the conditions of Eqs. (F.21), (F.24) in terms of 
the asymptotic beam growth angle. Placing this paraxial approximation 
condition into Eq. (F.16) gives 

( )1 1
1/

0

tan tan 2p
e w

λ
θ

π
− −⎛ ⎞

= <<⎜ ⎟
⎝ ⎠

 

which is satisfied if o
1/ 54.7eθ << . If we keep the beam growth angle to 

about half this angle ( o
1/ 30eθ ≅ ) we might expect the propagating Gaussian 

beam will not violate significantly the paraxial condition. Angular values 
of this size are consistent with the angular limits on the paraxial approxi-
mation discussed in Chapter 9 using plane waves and spherical waves.  

F.3 Transmission/Reflection of a Gaussian Beam 

As shown previously a circularly symmetrical Gaussian beam is completely 
determined by the amplitude, ( ) ( )0 /P z P q z= , and the phase parameter, 
 

expression for d P / dz , then Eq. (F.29) will be satisfied if for the one 
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Fig. F.4. Transmission and reflection of a circular cross-section compressional 
wave Gaussian beam at a spherically curved interface between two media. 

q(z). The propagation law of Eq. (F.9) describes how both these amplitude 
and phase terms change as this Gaussian beam propagates. Here we want 
to define the corresponding transmission and reflection laws when the 
symmetric Gaussian beam strikes a spherically curved interface of radius, 

0R , at normal incidence, as shown in Fig. F.4. In this case, both axially 
symmetric transmitted and reflected Gaussian beams are generated. The 
incident, transmitted, and reflected Gaussian beams can all be written in 
general as  
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 (F.33)

where ( ), ,i r tp p p  are the incident, reflected and transmitted wave pressures 
and /pm pmk cω=  (m = 1,2) are the wave numbers for the first and second 
media, respectively, as shown in Fig. F.4.The z-coordinate here is taken 
with its origin at the interface (see Fig. F.4). Both the incident and 
transmitted waves are propagating in the + z direction, but the reflected 
wave is propagating in the 2z z= − direction. Typically, the incident 
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Gaussian beam will have started out from some fixed position at time  t = 0 
located at a distance, D, from the interface in medium one so that the term, 

0 1/ pt D c= , which appears in all the beams of Eq. (F.33) simply represents 
the common time delay for all these waves. 

At the curved interface, Σ , the boundary conditions require that 
pressure, p, and the normal velocity, zv , must be continuous so that we 
have 

( ) ( ) ( )
( ) ( ) ( ).

i r t

iz rz tz

p p p

v v v

Σ + Σ = Σ

Σ + Σ = Σ
 (F.34)

 
Because we showed in the paraxial approximation the pressure and 
velocity in the Gaussian beams must satisfy Eq. (F.25), the boundary 
conditions of Eq. (F.34) can be re-written as 

( ) ( ) ( )
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 (F.35)

where the minus sign arises in Eq. (F.35) since 
21 1 1 1r p z p zp c v c vρ ρ= = − . 

We will not attempt to satisfy the boundary conditions of Eq. (F.35) 
exactly, but consistent with the paraxial approximation where all these 
Gaussian beams are considered as quasi-plane waves confined to a region 
near the z-axis, we will match the amplitude ( P ) terms in Eq. (F.34) only 
at the point z = 0 and the phase terms to second order in the distance, ρ , 
from the z-axis. Thus, the boundary conditions of Eq. (F.35) for the 
amplitude terms become 
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( ) ( ) ( )

1 1 1 1 2 2

0 0 0

0 0 0
i r t

i r t

p p p

P P P

P P P
c c cρ ρ ρ

+ =

− =
 (F.36)

(where we can cancel all the phase terms in Eq. (F.36) since they will all 
be made common in the following discussion). Solving these equations we 
find 
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Fig. F.5. The geometry of the spherical interface. 
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where ( ),p pR T  are the plane wave reflection and transmission coefficients 
(based on pressure ratios – see Appendix D). 

Now consider the matching of the phase terms of Eq. (F.35). On 
the interface,Σ , from Fig. F.5 we see that   
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so matching the incident and transmitted Gaussian beam phase terms to 
second order we  have from Eq. (F.33) 
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which gives the transmission law 
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Similarly, matching the incident and reflected Gaussian beam phase terms 
in Eq. (F.33) we find 
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to obtain the reflection law 
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= +  (F.42)

If we let ( ) ( )( )0 , 0i iR w  be the wave front curvature and beam width of the 
incident Gaussian beam at the interface, respectively and similarly define 

( ) ( )( )0 , 0t tR w  and ( ) ( )( )0 , 0r rR w  for the transmitted and reflected 
beams, since 
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taking the real and imaginary parts of the transmission and reflection laws 
show that  

( ) ( ) ( )0 0 0t r iw w w= =  (F.44)

i.e. the widths of all the beams at the interface are the same and also 
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 (F.45)

showing how the wave front curvatures of the incident and transmitted/ 
reflected Gaussian beams are related at the interface. For a planar interface, 
these relations simply reduce to 
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Fig. F.6. A Gaussian beam incident on a curved interface where the waist of the 
incident beam is located at the interface and the corresponding transmitted 
Gaussian beam and its wave front curvature is shown for (a) 2 1p pc c>  and 

0 0R > , (b) 2 1p pc c>  and 0 0R < . 
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From Eq. (F.45) we can gain some understanding of the effects of the 
curvature of the interface (and the wave speeds) on the transmitted wave if 
we consider the case where the waist of the incident beam occurs at the 
interface so that ( )1/ 0 0iR = . Then if we have 2 1p pc c>  and 0 0R >  we see 
from Eq. (F.45) that ( )0 0tR > . In this case the transmitted Gaussian beam 
is a diverging beam as shown in Fig. F.6 (a). This type of interface is 
therefore a defocusing interface for the transmitted wave. If instead we 
have 2 1p pc c>  and 0 0R <  we find ( )0 0tR <  and the transmitted Gaussian 
beam is a converging beam as shown in Fig. F.6 (b). In this case the 
interface  acts  as a  focusing interface  for  the  transmitted  wave. But  for  
 



558      Gaussian Beam Fundamentals 

Fig. F.7. The transmission of a circularly symmetric Gaussian beam across 
multiple spherically curved interfaces. 

2 1p pc c<  the interfaces shown in Fig. F.6 (a), (b) are instead focusing and 
defocusing interfaces, respectively, for the transmitted wave. These same 
focusing or defocusing characteristics of curved interfaces were also 
discussed in Chapter 8, section 8.12. If we again let ( )1/ 0 0iR =  and 
examine the reflected wave, Eq. (F.45) shows that regardless of the wave 
speeds we have ( )0 0rR > if 0 0R >  and ( )0 0rR <  if 0 0R < , which 
results in a diverging (defocused) and converging (focused) reflected 
Gaussian beam, respectively. 

F.4 Gaussian Beams at Multiple Interfaces and ABCD 
Matrices 

In the last section we developed the transmission/reflection laws for a 
symmetrical Gaussian beam at normal incidence to a spherically curved 
interface. We also have previously obtained the propagation law for a 
Gaussian beam (Eq. (F.9)). If an axially symmetrical Gaussian beam 
interacts with multiple spherically curved interfaces at normal incidence 
we can use those laws and the plane wave transmission/reflection 
coefficients to obtain the final form of the Gaussian beam (see Fig. F.7, 
where the beam is shown in undergoing multiple transmissions only, but 
we will also consider here multiple reflections as well). For example, if a 
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Gaussian beam starts at  z = 0 with a pressure amplitude ( )0P  and phase 
parameter ( )1 0q , then after propagation through a distance 1z  we have: 
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If this beam then is transmitted across an interface at a point 1Q  (see 
Fig. F.7) where 1z z=  and propagates from 1Q  a distance 2z  in a second 
medium we have 
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where ( )mq z  is the q-parameter for the mth media and we will take the  
z-coordinate for each medium to have as its origin the starting point for the 
Gaussian beam in that medium. Since point 1Q  is both the ending point for 
the beam in medium one and the starting point for the beam in medium 
two we have ( ) ( )1 1 1q Q q z= , ( ) ( )2 1 2 0q Q q=  so we can also write 
Eq. (F.48) as 
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Obviously this same process can be continued for additional transmissions 
(or reflections). After the interaction with M interfaces, for example, we 
could write the beam in medium M+1 as 
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where 1m mT +  is either a transmission or reflection coefficient depending on 
whether we are considering a transmitted or reflected wave at the mth 
interface between medium m and m+1. The propagation and transmission/ 
reflection laws developed previously then can be written for all M +1 
media as 

 
Propagation laws: (for M +1 media) 

                              ( ) ( )0m m m mq z q z= +  ( )1, 1m M= +  (F.51)

Transmission laws: (for M interfaces) 
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Reflection laws: (for M interfaces) 
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If we let a final value of q after propagation/transmission/reflection be fq  
and an initial value before propagation/transmission/reflection be iq , then 
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or, equivalently, 
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and the ABCD parameters can be placed in an ABCD matrix that defines 
each law: 
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all these laws can be written in the form [F.1], [F.2] 
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Transmission laws: 

( )
( )
1 1

0

1 0

/ 1
t t

p m p m p mt t

p mm

A B c c c
C D

R c
+ +

⎡ ⎤
⎡ ⎤ ⎢ ⎥

−=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎣ ⎦

 (F.57)

Reflection laws: 

( )0

1 0
2 1

r r

r r

m

A B
C D R

⎡ ⎤
⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

  (F.58)

A remarkable feature of writing the laws in this fashion is that even after 
multiple propagations and transmissions/reflections the final and starting 
q-values can still be related in the forms of Eq. (F.54) and Eq. (F.55) as 
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where the “global” ABCD matrix components appearing in Eq. (F.59) and 
Eq. (F.60) can be obtained from a matrix multiplication of all the 
individual propagation, transmission,  and reflection ABCD matrices that 
define a particular set of beam propagations or interface interactions. One 
can easily prove this fact by merely placing Eq. (F.54) for one ABCD 

the resulting equation again is in the same form of Eq. (F.54) but with 
ABCD elements corresponding to the matrix multiplication of the original 
two matrices. For example, after propagation of a beam in medium one 
followed by a transmission across an interface we would have 
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 (F.61)

matrix into Eq. (F.54) involving a second ABCD matrix and showing that 
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Fig. F.8. Propagation of a Gaussian beam across a plane interface. 

and this same process can be continued for any number of interactions 
[Note: the order of the matrix multiplications is important. In the above 
example propagation occurs first, followed by transmission, but in 
multiplying the ABCD matrices this order is reversed]. Using ABCD 
matrices in this fashion makes it very easy to follow a Gaussian beam 
through multiple  interfaces and similar ABCD matrices are commonly 
used in the laser science field to describe the interaction a Gaussian laser 
beam with multiple optical elements such as lenses, mirrors, etc. As a 
simple example, consider the propagation of a Gaussian beam through a 
distance 1z  in medium one followed by transmission across a plane 
interface, and then propagation through a distance 2z  in medium two (see 
Fig. F.8). In this case we have 
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so that Eq. (F.59) yields 

( ) ( )1 2
2 2 1 1 2

2 1

0 .p p

p p

c c
q z q z z

c c
⎡ ⎤

= + +⎢ ⎥
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 (F.63)

This shows that the phase terms of the incident beam propagating, which is 
given by: 
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( )
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1 12 0
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 (F.64)

becomes for the transmitted beam 

( ) ( )( )
2

1

1 1 2 1 2

,
2 0 /

p

p p

ik

q z c c z
ρ

+ +
 (F.65)

which looks exactly like the incident beam term with the replacement 
( )1 1 2 1 2/p pz z c c z→ + . This same behavior is discussed in Chapter 8, section 

8.5 when examining the on-axis pressure for a circular piston transducer in 
the paraxial approximation.  

In a single medium problem the phase term in the Gaussian beam 
can be written as 
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(F.66)

where the propagation ABCD matrix components for medium one are 
1 1 1 1 11, , 0d d d dA D B z C= = = = . By using the global ABCD matrix formed 

from the individual ABCD matrices for a multiple medium problem, the 
phase term in Eq. (F.50) can also be written in the same form where 
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(F.67)

In a single medium case the amplitude coefficient of the Gaussian beam 
contains the term 
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q z A q B

=
⎡ ⎤+⎣ ⎦

 (F.68)

The similar part of the amplitude coefficient in Eq. (F.50) for a multiple 
medium problem contains a series of products of the same form given on 
the left side of Eq. (F.68). Consider, for example, the first two products 
given by: 
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( )
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( )
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 (F.69)

and the global ABCD matrix corresponding to propagation in medium one, 
transmission across the first interface, and propagation in medium two: 

2 2 1 1 1 1

2 2 1 1 1 1

,
d d t t d dG G
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 (F.70)

where ( ), , ,d d d d
m m m mA B C D  are the ABCD matrix components for propagation 

in medium m, and ( ), , ,t t t t
m m m mA B C D  are the ABCD components for 

transmission across the mth interface. We have 
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 (F.71)

so combining these two relations we find 
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where 
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 (F.73)

We then can substitute ( ) ( )1 1 1 1 10d dq z A q B= + into ( )1 1A q z B′ ′+ to obtain 

( ) ( )1 1 1 0G GA q z B A q B′ ′+ = +  (F.74)

in terms of the global matrix elements 1 1,G d G dA A A B A A B′ ′ ′= = + . This 
also follows by writing Eq. (F.70) as 
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Thus, from Eqs. (F.72) and (F.74) we can write 
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which has exactly the same form as for the single medium case (Eq. (F.68)). 
We can continue this process and consider all the other pairs of amplitude 
terms in Eq. (F.50) in exactly the same manner and so obtain 
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where now ( ),G GA B are elements of the global ABCD matrix for all the 
media and interfaces involved in going from medium one to medium M+1. 

We can also define a global transmission/reflection coefficient, 
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=

=∏T  and a propagation delay term 
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Eq. (F.50) as 
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which is in exactly the same form as for the propagation of a Gaussian 
beam in a single medium where using the same notation we have: 
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Fig. F.9. (a) A paraxial geometrical ray before and after a general ray interaction, 
and (b) the special case of propagation of the ray over a distance, z. The central 
ray is the dashed line and the paraxial ray is assumed to have a small distance 
from the central ray and a small slope relative to the central ray. 

( ) ( ) ( )
( )

( )
( )

1
1

1 1 1

2
1

1 1
1 1 1

1 1 1

0
, 0

0

exp exp .
02
0

d d

p
p d d

d d

q
p z P

A q B

ik
ik z

A q B
C q D

ω

ρ

=
+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⋅ ⎣ ⎦ ⎢ ⎥+
⎢ ⎥

+⎢ ⎥⎣ ⎦

 (F.79)

 
In Chapter 9 it is shown that even in more general Gaussian beam problems 
one can use ABCD matrices, but for those cases the scalar ( ), , ,A B C D  
components are replaced by 2x2 matrices ( ), , ,A B C D .  

The ABCD matrices used here for our Gaussian beam problems 
are closely related to the same ABCD matrices used in geometrical optics 
to facilitate the tracing of paraxial rays through optical elements [F.1], 
[F.2]. Consider, for example a central ray before and after a given 
interaction (such as propagation through a lens or reflection from a mirror, 
etc.) as shown in Fig. F.9 (a) and a nearby (paraxial) ray. Let ( )1 1,r r′  be the 
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displacement and slope of the paraxial ray from the central ray before an 
interaction and let ( )2 2,r r′ be the same quantities for the paraxial ray after 
an interaction (see Fig. F.9 (a)). For a paraxial ray that is close to the 
central ray and at a small slope to that ray it is reasonable to assume that 
these quantities are linearly related to one another, i.e. 

2 1

2 1

.
r rA B
r rC D
⎛ ⎞ ⎛ ⎞⎡ ⎤

=⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′⎣ ⎦⎝ ⎠ ⎝ ⎠
 (F.80)

However, if we define curvatures 1 1 1 2 2 2/ , /R r r R r r′ ′= =  we find 

1
2

1

,AR BR
CR D

+
=

+
 (F.81)

which is of the same form as Eq. (F.59) for the q- parameter in a Gaussian 
beam. This is perhaps not surprising since the wave front curvature of the 
Gaussian beam, ( )R z , is related to ( )q z  through 

( ) ( )
1 1Re

q z R z
⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠

 (F.82)

(where Re denotes “real part of”) so that we can view the use of the ABCD 
matrices for Gaussian beam problems as the extension of the geometrical 
optics relations for real ray curvatures to corresponding complex q-values 
that define the Gaussian beam. To demonstrate in a simple case that the 
geometrical optics ABCD matrices are indeed the same as our Gaussian 
beam matrices, consider the ABCD matrix for propagation of a ray through 
a distance, z, as shown in Fig. F.9 (b).Then since 2 1r r′ ′=   and 2 1 1r r r z′= +  
(for small slopes) we have 

2 1

2 1

1
,

0 1
r rz
r r
⎛ ⎞ ⎛ ⎞⎡ ⎤

=⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′⎣ ⎦⎝ ⎠ ⎝ ⎠
 (F.83)

which is identical to the propagation ABCD matrix of Eq. (F.56). In 
Chapter 9, this same example is discussed in a more general context (see 
section 9.4). 
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F.5 Multi-Gaussian Beam Modeling 

In 1988 Wen and Breazeale [F.4] showed that by the superposition of only 
10 Gaussian beams, one could generate an accurate model of the radiated 
wave field of a circular planar piston transducer. Since commercial 
ultrasonic NDE transducers can often be modeled as piston transducers, 
this multi-Gaussian beam model is a very effective tool for simulating the 
sound beams generated in NDE tests. Here we will briefly outline Wen and 
Breazeale's multi-Gaussian beam model and relate it to our previous 
Gaussian beam discussions. Chapter 9 also gives many more details of 
multi-Gaussian beam models. 

At  z = 0 for a single Gaussian beam the pressure is given by (see 
Eq. (F.11)) 

2
0

0 0

exp .
2

pikPp
q q

ρ⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 (F.84)

Wen and Breazeale wrote Eq. (F.81) instead as 

2 2

0

exp /
p

p A B a
c v

ρ
ρ

⎡ ⎤= −⎣ ⎦  (F.85)

and used a non-linear least squares optimization procedure to determine a 
set of 10 complex A and B coefficients that produced  a constant velocity, 

0v , on the face of a circular piston transducer of radius a located at z = 0, 
as discussed in more detail in Chapter 9. The wave field generated by the 
superposition of 10 Gaussian beams with the starting forms of Eq. (F.81) is 
shown in Chapter 9 to match well the exact wave field of the piston 
transducer except close to the transducer face. Note that these A, B 
coefficients represent Gaussian beams of different waist locations, widths 
and amplitudes since 
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 (F.86)

from which it follows that 
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A multi-Gaussian beam model of a transducer uses the A, B coefficients 
directly to synthesize the transducer wave field so there is no advantage in 
expressing the wave field in terms of Gaussian waist locations and width 
parameters, as is commonly done in the laser science literature. Instead, 
using Eq. (F.87) we can write the propagating Gaussian beam in a single 
medium (see Eq. (F.11)) in terms of A and B directly: 
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where 2 / 2R pD k a=  is called the Rayleigh distance for the piston transducer, 
a quantity that is analogous to the confocal parameter for a Gaussian beam. 
Using the ten A, B coefficients of Wen and Breazeale then yields a multi-
Gaussian transducer beam model for a single medium given by 
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which is the form used in Chapter 9 (see Eq. (9.134)). If we define starting 
values for each of the Gaussian beams in Eq. (F.89) as 
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then using Eq. (F.78) we have a very simple model for the field of a piston 
transducer after multiple transmissions or reflections: 
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In Chapter 9, use is made of the Wen and Breazeale coefficients and the 
corresponding ( ), , ,A B C D matrices in this same manner to obtain transducer 
wave fields much more complex multiple media problems. 
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F.7 Exercises 

1. Consider the propagation of a central ray and a paraxial ray at oblique 
incidence across a plane interface where the paraxial ray lies in the x-z 
plane (see Fig. F.10). Relate the distances ( )1 2,x x  to each other to first 
order in terms of the angles ( )1 2,θ θ  directly from the geometry. Also, 
using Snell's law, which must be satisfied for both the central ray and the 
paraxial ray, relate the slopes ( )1 2,x x′ ′  to each other to first order in terms 
of ( )1 2,θ θ  and ( )1 2,p pc c . Combining these results, obtain the ABCD 
matrix for this case, where 

paraxial asymptotics. J. Opt. Soc. Am. 18: 1588-1611  
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Fig. F.10. A central ray (dashed line) and a nearby paraxial ray (arrows) being 
transmitted at oblique incidence across a planar interface. 
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Since there is no change in direction for the central ray in the y-direction, 
the values ( )2 2,y y′  and ( )1 1,y y′  for the paraxial ray are related by a 
corresponding ABCD matrix valid near normal incidence. From your 
previous results let 1 2, 0θ θ →  to show that in this case  
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Because there are different ABCD matrices in the x- and y-directions, an 
incident Gaussian beam of circular cross-section, where the phase term is 
given at the interface by 

( )2 22
1 1exp exp

2 2
p p

i i

x yik ik
q q
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⎢ ⎥=⎢ ⎥
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will be changed, upon transmission through the interface into a Gaussian  
beam of elliptical cross section, where the phase term is: 
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Thus, for oblique incidence problems we can no longer consider only 
circular cross-section Gaussian beam solutions of the paraxial wave 
equation but must treat more general solutions for elliptical cross-section 
Gaussian beams. For oblique incidence on curved interfaces the 
transmitted Gaussian beam can also be rotated, resulting in Gaussian 
beams with phase terms containing both quadratic and mixed products of 
the coordinates, i.e. ( )2 2, ,x xy y . Chapter 9 treats these more general cases 
by seeking Gaussian beam solutions to the paraxial wave equation given 
by 

( )1( )exp exp ( )
2

T
p p

ip P z ik z zω⎛ ⎞= ⎜ ⎟
⎝ ⎠

X M X  

where [ , ]Tx y=X and pM  is a 2x2 symmetrical matrix. For a circular 
cross-section Gaussian beam then we have 
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2. Wen and Breazeale also defined 15 Gaussian beam coefficients ( ),n nA B  
that improve on the modeling of a circular planar piston transducer in 
comparison to their original 10 coefficients [F.5]. Use the MATLAB 
function gauss_c15 that returns those 15 coefficients and write a 
MATLAB script that obtains the normalized pressure field, 1 1 0/ pp c vρ , for 
a 6.35 mm radius piston transducer radiating through spherically curved 
water-steel interface ( 0 76R = mm) at a frequency of 5 MHz (see Fig. 
F.11) and plots the magnitude of the on-axis normalized pressure versus 
the distance 2z in the steel from 2z = 0 to 2z = 50 mm. Modify the script 
and consider the same case but where 0 76R = − mm. 
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Fig. F.11. A circular planar piston transducer radiating a sound beam through a 
spherically curved fluid-solid interface. 

 
Fig. F.12. Radiation of an immersion transducer through an aluminum plate. 

 

3. Rewrite the scripts of problem 2 so that they display a 2-D image of the 
magnitude of the normalized pressure (i.e. normalized pressure versus 
( )2, zρ ) in the steel for both the defocusing and focusing interfaces 
considered there. 
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4. Use the ABCD matrices and the 15 coefficients of Wen and Breazeale 
contained in the MATLAB function gauss_c15 to write a MATLAB script 
that obtains the normalized pressure, 1 1 0/ pp c vρ , in a sound beam that is 
directly transmitted (with no reflections) from a 10 MHz, 6.35 mm radius 
planar piston transducer  through the aluminum plate shown in Fig. F.12. 
The script should plot the magnitude of the normalized pressure versus ρ  
at 3z = 50 mm. 
 
5. Modify the script of problem 4 so that the normalized pressure 
transmitted through the plate is evaluated at many frequencies for  

0ρ = , 3z = 50 mm and is multiplied at each frequency  by the MATLAB 
function spectrum1 written for exercise 1 in Appendix A, where the center 
frequency fc = 10 MHz and the bandwidth bw = 4 MHz. Evaluate this 
product at 1024 positive frequencies ranging from zero to 100 MHz and 
use the Fourier transform IFourierT defined in Appendix A to obtain a 
time-domain pulse. Plot that pulse versus time. In evaluating the 
normalized pressure, ignore the 1 1 2 2 3 3exp p p pik z ik z ik z⎡ ⎤+ +⎣ ⎦  propagation 
term which simply produces a time delay. 



G MATLAB Functions and Scripts 

A number of MATLAB functions and scripts are described in the text. The 

experimental comparisons. In this Appendix we will summarize the 
MATLAB functions and scripts discussed in the text and give code listings 
for those functions which are not explicitly defined elsewhere. Note that a 
number of the MATLAB functions used in the exercises are not given 
here, but they can be found on the web site. In some cases those MATLAB 
functions are given in p-code form instead of ordinary open text m-files so 

exercise problems given at the end of the Chapters. Those p-code functions 
were generated in MATLAB release 7.0 so that they will not work with 
earlier versions of MATLAB. If this poses a problem, there are alternate  
p-code versions of the same functions on the web that were generated in 

G.1 Fourier Analysis Functions 

Vf = FourierT(vt , dt); 
vt = IFourierT(Vf , dt); 
y = s_space(a, b, M); 
y = c_shift(vt, N); 
y = t_shift(t, N); 
y = Wiener_filter(O, I, e); 
Vf =lp_filter(f, fstart, fend); 
y = system_f (f, amp, fc, bw); 

 
The functions Fourier_T(vt, dt) and IFourierT(Vf, dt)  perform the Fast 
Fourier transform and its inverse on a set of sampled values in the time and 
frequency domains, respectively. Besides those sampled values the 
sampling interval in the time domain, dt, is the only other input parameter 

MATLAB code listings for all these functions/scripts are available on 

the MAT-files that contain the experimental data used in various model/ 
the web at www.springer.com/978-0-387-49061-8. The web site also has 

that they can be used by students as unknown “black boxes” in some of the 

release 6.5 and are identified by having a “65” in their function name. 
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to these functions. These discrete Fourier transforms implement the Fourier 
transform and its inverse as defined in Appendix A. Code listings of both 
these functions can be found in Appendix A. 

 The function s_space(a, b, M) is a utility function that produces a 
set of M evenly spaced sampled values from a to (b − dx), where 
dx = (b − a)/M is the sample spacing. These are precisely the sampled 
values that are used in Fourier analysis so that this function is used 
primarily to generate the time and frequency axes to use in conjunction 
with FourierT and IFourierT. This function is discussed in Chapter 12 and 
the code listing for the function can be found in section G.8.  

 The function c_shift(vt, N) moves the last N components of the 
vector vt into the first N component places and shifts the remaining 
components of vt to follow those N components. This type of shift is 
called a circular shift. This shift is sometimes needed since IFourierT 
always generates a set of sampled time domain values over the time 
interval [0, T), where T = 1/df is the length of the total time window and df 
is the sample interval in the frequency domain. However, if the sampled 
time domain function values are non-zero before time t = 0, these sampled 
values at negative times will appear in the upper half of the window and 
the function will appear to be “split”. This splitting can be removed by 
applying c_shift to the sampled values with a large enough value for N. 
For example, consider the following eight function values: 
 
>> f= [ 1 1 0 0 0 0 2 2]; 
 
If we apply c_shift to this function with N  = 2 we obtain 
 
>> fs =c_shift(f,2) 
 
fs = 
 
     2     2     1     1     0     0     0     0 

 
The use of c_shift on a sampled time-domain signal will also mean 

that the corresponding sampling times will be incorrect. In some cases this 
is not significant, but if one wants to also change the time axis appropria-
tely to preserve the original time values then the function t_shift(t, N) can 
also be used in conjunction with c_shift. As a simple example of the action 
of t_shift, consider the following eight time domain values: 
 
>> t = [ 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7]; 
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Now, apply t_shift to this sampled time axis with N = 2: 
 
>> t_shift(t, 2) 
 
ans = 
 
   -0.2000   -0.1000      0    0.1000    0.2000    0.3000    0.4000    
0.5000 
 

In most cases t_shift is used in conjunction with c_shift in plotting 
a sampled function. For example, the MATLAB command plot(t_shift(t, N), 
c_shift(V, N)) will do a circular shift of the last N sampled values contained 
in the vector V and also modify the sampled values of the time axis contained 
in the vector t appropriately so that the original time origin is changed 
appropriately in the resulting plot. The code listings for both c_shift and  
t_shift are given in section G.8. 

 The function Wiener_filter(O, I, e) is described in Appendix C 
where its code listing is also given. This function takes the sampled frequency 
domain values contained in vectors O and I and performs a deconvolution. 
A direct deconvolution would simply be an element by element division, 
i.e. in MATLAB we would compute  
 
>> G = O./ I ; 
 

The Wiener filter function modifies this division process and 
desensitizes it to noise, as discussed in Appendix C. The constant, e, which 
is the other input to this function, is used in the Wiener filter to represent 
the noise level present. Generally, small values such as e = 0.01 to 0.05 
work well in many ultrasonic NDE problems. 

 The function lp_filter(f, fstart, fend) generates a low-pass filter that 
is unity below a frequency value, fstart, and smoothly goes to zero at the 
value, fend. Above fend the function is zero. Multiplying a model-based 
function (that is defined in the frequency domain) by this low-pass filter 
will remove the high frequency content and allow one to perform an 
inverse FFT on the product as long as fend is chosen below the Nyquist 
frequency. The code listing for this function is given in section G.8. 

 The function system_f (f, amp, fc, bw) models the behavior of a 
system function in the frequency domain with a Gaussian that is defined 
by its amplitude, center frequency, and bandwidth. The code listing for this 
function is given in section G.8. 



578      MATLAB Functions and Scripts 

G.2 Setup Functions 

setup = setup_maker; 
display_setup; 
 
The function setup_maker provides a way of storing all the input parameters 
needed to generate the ultrasonic measurement models described in 
Chapter 12. The function places a default set of values for all these para-
meters in a MATLAB structure called setup which then can be modified 
by the user to produce any set of parameters needed to describe a particular 
ultrasonic system configuration. When modifying the setup structure, it is 
convenient to be able to examine its contents to check that the proper para-
meters are present. This can be easily done with the function display_setup 
which lists all the current setup parameters. There are no input arguments 
for either of these functions. The code listings for both setup_maker and 
display_setup are given in Chapter 12. 

G.3 Ultrasonic Beam Modeling Functions 

[A, B] = gauss_c15; 
T = fluid_solid(setup); 
T =smooth_solid(setup); 
V = init_z(setup); 
[Vf, setup] = MGbeam(setup); 
[Vi, setup] = I_MGbeam(setup); 
 
The multi-Gaussian beam model described in Chapter 9 and implemented 
in software in Chapter 12 uses a set  15 complex-valued amplitude and 
phase coefficients (A,B) to model the sound beam generated by an 
ultrasonic transducer. Those 15 coefficients are returned by the function 
gauss_c15. There are no input arguments for gauss_c15. The code listing 
for gauss_c15 is given in Chapter 12. 

 When a sound beam passes through an interface, changes in the 
amplitude of the beam are controlled by the plane wave transmission 
coefficient as discussed in Chapter 9. The expressions for the plane wave 
transmission coefficients for a fluid-solid interface are obtained in Appendix 
D and those expressions are coded in the MATLAB function fluid_solid, 
whose code listing is given in Chapter 12. The only input argument of the 
function fluid_solid is the setup structure. This function extracts the 
necessary material and geometry parameters needed from that structure 
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and returns the appropriate plane wave transmission coefficient for the 
incident and transmitted wave types specified in setup. 

 In pulse-echo angle beam testing a P-wave transducer is placed on 
a solid wedge instead of being in a fluid. This wedge is then placed in 
“smooth” contact with the surface of the component being tested, as described 
in Appendix D. The expressions for the transmission coefficients for such 
a setup are given in Appendix D. The function smooth_solid, whose code 
listing is given in section G.8, performs identically to the fluid_solid function 
but returns instead the appropriate transmission coefficient for the angle 
beam testing setup.  

 In performing ultrasonic beam modeling studies, one may want to 
perform beam calculations at a single frequency for multiple locations in 
the beam field or synthesize a pulse by performing beam field calculations 
at many frequencies for a single location or multiple locations. Thus, the 
setup parameters setup.f, setup.geom.z1, setup.geom.z2, setup.geom.x2, 
and setup.geom.y2 may be scalars, vectors, or matrices depending on the 
type of study one wants to perform. The function init_z(setup) decides 
what the largest size of matrix is present for these parameters and simply 
outputs an empty array of values of that size. That empty array is then 
filled with beam field (velocity) values when the actual beam model 
calculations are performed by a beam model function. This pre-allocation 
of an empty array is done for efficiency. The code listing for the init_z 
function is given in Chapter 12.  

 The function MGbeam(setup) uses the multi-Gaussian beam 
theory described in Chapter 9 and the specific implementation described in 
Chapter12 to return the complex-valued velocity amplitude of the trans-
ducer sound field generated in a pulse-echo immersion test with input 
parameters as specified in the setup structure. In performing these 
calculations MG_beam also uses the functions gauss_c15, fluid_solid, and 
init_z described previously. The only input argument to the MGbeam 
function is the setup structure. The outputs of MGBeam are the beam 
velocity amplitude and a new setup structure that contains updated values 
for setup.wave.c1, setup.wave.c2, and setup.wave.T12 parameters (see 

 The function I_MGbeam(setup) uses all the same inputs and 
functions as MGbeam but instead of the velocity amplitude returned by 
MGbeam, this function returns a spatial integral of the square of the 
velocity amplitude, as required by the measurement model for long 
cylindrical reflectors such as a side-drilled hole (see Chapter 12). Like 
MGbeam, I_MGbeam also returns a new setup structure that contains 
updated values for setup.wave.c1, setup.wave.c2, and setup.wave.T12 
parameters. The code listing for I_MGbeam is given in Chapter12. 

Chapter 12). The code listing for MGbeam is given in Chapter 12. 
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G.4 Flaw Scattering Functions 

A = A_void(setup); 
A = A_crack(setup); 
A = A_SDH(setup); 
A = A_void_Psep(setup); 
A = A_void_Ssep(setup); 
A = A_SDH_Psep(setup); 
A = A_SDH_Ssep(setup); 
A = A_unity(setup); 
 
As discussed in Chapters 10, 11 and 12 a component of the vector far-field 
scattering amplitude of a flaw is a quantity that can be used to characterize 
the flaw response. This quantity appears explicitly as part of an ultrasonic 
measurement model when the beam variations over the flaw surface are 
negligible. The functions A_void(setup), A_crack(setup), and A_SDH(setup) 
return the pulse-echo far-field scattering amplitude component for a void, 
crack, and a side-drilled hole, respectively, using the Kirchhoff approxi-
mation. The incident waves can either be P-waves or S-waves. Code listings 
for all three of these functions are given in Chapter 12.  

 Spherical and cylindrical shaped flaws are the only two geometries 
where one can obtain exact separation of variables solutions for the far- field 
scattering amplitude of a flaw in a solid. The functions A_void_Psep(setup) 
and A_void_Ssep(setup) return the pulse-echo scattering amplitudes for a 
spherical void for incident P-waves or SV-waves, respectively, using the 
method of separation of variables. The functions A_SDH_Psep(setup) and 
A_SDH_Ssep(setup) return the pulse-echo scattering amplitudes for a 
cylindrical void (side-drilled hole) for P-waves and SV-waves, respec-
tively, when the incident wave direction is perpendicular to the axis of the 
hole. These two functions use a 2-D separation of variables solution for the 
hole and convert it to a 3-D scattering amplitude normalized by the length 
of the hole using the relationship described in Chapter 10. The code 
listings for all four functions that implement these separation of variables 
solutions are given in section G.8. 

 When determining the far-field scattering amplitude of a flaw 
experimentally, one needs to deconvolve a measured flaw response with 
all those terms in the measurement model except the far-field scattering 
amplitude term, as discussed in Chapter 13. Those terms can be generated 
by measurement model function with the far-field scattering amplitude  
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response set equal to one at all frequencies. The function A_unity(setup) 
simply returns these needed values of unity. The code listing for this function 
is given in Chapter 13. 

G.5 Ultrasonic Measurement Modeling Functions 

y = attenuate(setup); 
s = systf(setup); 
s = exp_systf(setup); 
[Vf, setup] = TG_PE_MM(setup); 
[Vi, setup] = SDH_PE_MM(setup); 
 
An ultrasonic measurement model requires an ultrasonic beam model and 
flaw scattering model to account for the beam propagation and scattering 
effects present in an ultrasonic measurement. Since the beam model 
functions MGbeam and I_MGbeam predict the beam amplitudes in ideal 
(lossless) media, material attenuation effects must be included separately. 
The function attenuate(setup) returns a frequency dependent attenuation 
factor that allows us to include these losses based on measured attenuation 
coefficients placed in the setup structure. The code listing for this function 
is given in Chapter 12.  

 An ultrasonic measurement model also requires a specification of 
the system function that characterizes all the electrical and electromecha-
nical components present in the measurement system. For simulation 
studies, one can use a model-based system function that mimics the 
behavior of a real (measured) system function. The function systf(setup) is 
such a function that returns a purely model-based system function deter-
mined by specified amplitude, center frequency, and bandwidth parameters 
in the setup structure. In contrast, the function exp_systf (setup) uses the 
measured voltage in a reference experiment to determine the system 
function experimentally. This sampled voltage and the corresponding sam-
pled time axis must be contained in a MAT-file whose name is contained 
in the setup structure. The function exp_systf then uses these measured 
values in combination with other parameters of the reference setup contained 
in the setup structure to return the system function. Code listings for systf 
and exp_systf are given in Chapter 12. 

 The function TG_PE_MM(setup) generates the pulse-echo response 
of a flaw in an immersion setup, as described in Chapter 12, using the 
Thompson-Gray measurement model. This measurement model is suitable 
for modeling the response of a flaw when the beam variations over the 
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flaw surface are negligible, as discussed in Chapter 11. This function 
returns the output voltage (in the frequency domain) and a new setup 
structure that contains updated values for setup.wave.c1, setup.wave.c2, 
and setup.wave.T12 parameters. The code listing for this function is given 
in Chapter 12.  

 The function SDH_PE_MM(setup) similarly returns the pulse-
echo output voltage (in the frequency domain) for a side-drilled hole in a 
an immersion setup, as discussed in Chapter 12. This measurement model 
assumes the beam variations are negligible over the cross-sectional area of 
the side-drilled hole but accounts for the beam variations over the entire 
length of the hole. This function also returns a new setup structure that 
contains updated values for setup.wave.c1, setup.wave.c2, and setup.wave. 
T12 parameters. The code listing for this function is given in Chapter 12. 

G.6 Miscellaneous Functions 

y= pulserVT(V0, t0, a1, a2, t) ; 
y =fresnel_int(x) ; 
 
The function pulserVT implements Eq. (2.3) of Chapter 2 which uses the 
four parameters (V0, t0, a1, a2) to model the open-circuit output voltage of 
a spike pulser or square wave pulser versus time. The code listing for this 
function is given in section G.8.The function fresnel_int computes the 
Fresnel integral, where the argument, x, is the upper limit of that integral. 
As shown in Chapter 8, this integral appears in modeling rectangular 
transducers. The code listing for this function is given in section G.8. 

G.7 MATLAB Script Examples 

TG_sphere_example1 
TG_sphere_example2 
TG_sphere_example3 
FBH_example1 
SDH_example1 
SDH_deconvolve1 
 
In Chapters 12 and 13 scripts that implement a number of measurement 
model examples are given. The script TG_sphere_example1, for example,  
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uses the Thompson-Gray measurement model to calculate the time domain 
pulse-echo P-wave response of an on-axis spherical pore interrogated by a 
12.7 mm diameter, 5 MHz planar probe through a fluid-solid interface at 
normal incidence. The code for this script is given in Code Listing 12.11. 
In this case, a model-based system function is used in the calculations. The 
script TG_sphere_example2 models the same spherical pore considered in 
TG_sphere_example1 but uses an experimentally determined system 
function instead to synthesize the time-domain signal. The code for this 
script is given in Code Listing 12.13. The script TG_sphere_example3 also 
calculates the time domain response of the same pore contained in the 
previous two scripts but replaces the planar probe with a 12.46 mm 
diameter, 172.9 mm focal length focused probe (both of which values are 
measured effective parameters)  and uses an experimentally determined 
system function for this probe. The modeled response is then compared to 
a measured signal. The code for this script is given in Code Listing 12.14.  

 FBH_example1 is a script that illustrates an example of a 
measurement model calculation where the beam variations over the face of 
the flaw must be accounted for. In this case the script calculates the time 
domain pulse-echo P-wave response of an on-axis #8 flat-bottom hole 
interrogated by a 12.7 mm diameter, 5 MHz planar probe through a fluid-
solid interface at normal incidence and compares the modeled response to 
an experimentally measured signal. The code for this script is given in 
Code Listing 12.15.  

 The script SDH_example1 calculates the pulse-echo P-wave time 
domain response of an on-axis 1 mm diameter side-drilled hole interrogated 
by a 12.7 mm diameter, 5 MHz planar probe through a fluid-solid interface 
at normal incidence. The script uses an experimentally determined system 
function and compares the modeled response to an experimentally 
measured signal. The code for the script is given in Code Listing 12.19. 

 In Chapter 13, the script SDH_deconvolve1 demonstrates how a 
model-based approach can be used to extract the scattering amplitude of a 
side-drilled hole from a measured signal. This script uses the side-drilled 
hole measurement model and the measured pulse-echo P-wave time-domain 
response of an on-axis 1 mm diameter side-drilled hole interrogated by a 
12.7 mm diameter, 5 MHz planar probe through a fluid-solid interface at 
normal incidence to obtain an experimental far field scattering amplitude 
for the hole by deconvolution.  

This experimental result is plotted versus frequency and compared 
to the theoretical scattering amplitude calculated by the method of 
separation of variables. The code for this script is given in Code Listing 
13.2. 
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G.8 Code Listings of Some Supporting Functions 

Many of the MATLAB functions that implement the examples discussed 
in this book are given in the Chapters and Appendices. The previous 
sections describe where those functions can be found. This section gives 
MATLAB code listings for functions that are not given elsewhere in the 
text. All of the MATLAB functions, scripts, and experimental data files 
are on the web at www.springer.com/978-0-387-49061-8.  

 
 

Code Listing G.1. The MATLAB function s_space for generating sampled values 
for use in Fourier analysis. 
 
 
function  y = s_space(xstart, xend, num) 
% S_SPACE(XSTART,XEND, NUM) generates num evenly spaced sampled 
% values from xstart to (xend - dx), where dx is the sample  
% spacing. This is useful in FFT analysis where we generate 
% sampled periodic functions. Example: generate 1000 
% sampled frequencies from 0 to 100MHz via f =s_space(0,100,1000); 
% In this case the last value of f will be 99.9 MHz and the  
% sampling interval will be 100/1000 =0.1 MHz. 
% 
ye =linspace(xstart, xend, num+1); 
y=ye(1:num); 
 
 
 
Code Listing G.2. A circular shift function to use with FFT operations 
 
 
function y = c_shift(x, n) 
% C_SHIFT moves the last n components of the vector x  
% into the first n component places and shifts the  
% remaining components of x to follow those n components,  
% i.e. this is a circular shift.  Note: x must be row or column vector 
% 
[nr,nc]= size(x); 
if nr == 1 
    len = nc; 
    y = [x(len-n+1 : end), x(1:len -n)]; 
elseif nc == 1 
    len = nr; 
    y = [x(len-n+1 : end); x(1:len -n)]; 
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else 
    error(' c_shift only works with vectors') 
end 
 
 
 
Code Listing G.3. A time shift function to be used with c_shift to preserve the 
appropriate time axis values. 
 
 
function  y = t_shift(x, n) 
% T-SHIFT is used with the C_SHIFT function to change the time axis 
% values appropriately so that the time axis is shifted along with the 
% function. 
% Example use:  plot(t_shift(t, 100), c_shift(fun, 100)) 
[nr,nc]= size(x); 
dx = x(2) -x(1); 
if nr = = 1 
    len = nc; 
    y = [x(len-n+1 : end)-x(end)-dx+x(1), x(1:len -n)]; 
elseif nc = = 1 
    len = nr; 
    y = [x(len-n+1 : end)-x(end)-dx+x(1); x(1:len -n)]; 
else 
    error(' t_shift only works with vectors') 
end 
 
 
 
Code Listing G.4.  A low-pass filter for use in Fourier analysis where we have to 
remove the frequencies above a certain value. 
 
 
function  Vf =lp_filter(f, fstart, fend) 
% LP_FILTER(f, fstart, fend) generates a low-pass filter 
% which has a value of 1.0 below the frequency value  
% fstart and tapers to zero at frequencies above the  
% value fend with a cosine function.  
% The calling sequence is: 
% Vf = lp_filter(f, fstart, fend) 
 
if fend > f(end) 
    error( 'fend exceeds max frequency') 
end 
if fend < fstart 
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    error(' fend must be greater than fstart') 
end 
const = ones(size(f)).*(f < fstart); 
taper = cos(pi.*(f-fstart)./(2*(fend-fstart))).*(f >= fstart & f <= fend); 
Vf = const + taper; 
 
 
Code Listing G.5.  A function that simulates the band-limited behavior of a 
system function, i.e. where the frequency response is maximum at a particular 
frequency and has an extent in the frequency domain defined by a bandwidth 
parameter. 
 
 
function y = system_f (f, amp, fc, bw) 
% SYSTEM_F(f, amp, fc, bw) returns the system function as modeled by a  
% Gaussian window function of amplitude amp 
% centered at frequency fc and with a bandwidth bw defined to   
% be the spread in frequency at the half amplitude point in the Gaussian.  
% The Gaussian is tapered to zero at frequencies below fc with a  
% sine function to guarantee the dc value is always zero. 
% For small fc and large bw, this tapering will distort the Gaussian 
% The calling sequence for this function is: y =system_f(f, amp, fc, bw); 
 
% compute the 'a' parameter and define system function above and below the 
% center frequency 
a = sqrt(log(2))/(pi*bw); 
s1 = exp(-(2*a*pi*(f - fc)).^2).*(f > fc); 
s2 = exp(-(2*a*pi*(f - fc)).^2).*sin(pi*f/(2*fc)).*(f <= fc); 
% combine terms to obtain total system function 
y = amp*(s1 + s2); 
 
 
 
Code Listing G.6.  A function for calculating the transmission coefficient for 
refracted P-waves or S-waves at the interface between two solids in smooth (shear 
stress free) contact. The incident wave must be a P-wave. 
 
 
function T12 = smooth_solid(setup) 
% SMOOTH_SOLID(SETUP) computes the P-P (tpp) 
% and P-S (tps) transmission coefficients based on velocity ratios 
% for two solids in smooth contact. It obtains the necessary input 
% parameters from the setup structure and then returns the  
% appropriate transmission coefficient 
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% get setup parameters 
type1 =setup.type1; 
type2 =setup.type2; 
inc= setup.geom.i_ang; 
d1 = setup.matl.d1; 
d2 =setup.matl.d2; 
cp1 = setup.matl.cp1; 
cs1 =setup.matl.cs1; 
cp2 =setup.matl.cp2; 
cs2 =setup.matl.cs2; 
 
% consistency check (if incident wave in medium 1 is an S-wave 
% then can't use this fluid-solid trans. coefficient) 
 
if strcmp(type1, 's')  
    error('wrong wave type for medium 1') 
end 
iang = (inc.*pi)./180;  %change degrees to radians 
 
%calculate sines and cosines of all incident and refracted angles 
sinp1 = sin(iang); 
cosp1 = sqrt(1-sinp1.^2); 
sins1 = (cs1/cp1)*sin(iang); 
coss1= sqrt(1-sins1.^2); 
sinp2 = (cp2/cp1)*sin(iang); 
sins2 =(cs2/cp1)*sin(iang); 
    % take into account cosines of refracted angles may be imaginary beyond 
    % critical angles 
cosp2= (i*sqrt(sinp2.^2 - 1)).*(sinp2 >= 1) + ... 
    (sqrt(1 - sinp2.^2)).*(sinp2 < 1); 
coss2 = (i*sqrt(sins2.^2 - 1)).*(sins2 >= 1) + ... 
    (sqrt(1 - sins2.^2)).*(sins2 < 1); 
 
%calculate transmission coefficients 
denom1 = (cp1/cp2).*(cosp2./cosp1).*... 
    (4.*((cs1/cp1)^2).*(sins1.*coss1.*sinp1.*cosp1) + ... 
    1 - 4.*(sins1.^2).*(coss1.^2)); 
denom2 = (d2/d1).*(4.*((cs2/cp2)^2).*(sins2.*coss2.*sinp2.*cosp2) ... 
  + 1 - 4.*(sins2.^2).*(coss2.^2)); 
    denom = denom1 + denom2; 
    
tpp = ((2*cp1/cp2).*(1-2*sins1.^2).*(1-2*sins2.^2))./denom; 
tps = -((4*cp1*cs2/(cp2^2)).*sinp2.*cosp2.*(1-2*sins1.^2))./denom; 
%select appropriate coefficient 

% Note: If setup.matl.cs1 = 0 the values returned are for a fluid-solid interface. 
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    T12 = tpp; 
elseif strcmp(type2, 's') 
    T12 = tps; 
else 
    error('wrong wave type specification') 
end 
 
 
 
Code Listing G.7. A function that uses the separation of variables method to 
calculate the far field pulse-echo P-wave scattering of a spherical void. 
 
 
function Aout = A_void_Psep(setup)  
% A_VOID_PSEP  computes the far field P-wave scattering amplitude, Aout , 
% for a spherical void of radius b in an elastic solid (pulse echo)  
% using the method of separation of variables. the only input parameter is 
% the setup structure. The complex scattering amplitude, Aout, 
% is returned (in mm).  
% The calling sequence is:  
% Aout = A_void_Psep(setup) 
 
% get input parameters 
f=setup.f; 
b =setup.flaw.b; 
cp = setup.matl.cp2; 
cs =setup.matl.cs2; 
 
cr = cp/cs;                 % ratio of P- and S- wave speeds 
kp = 2000*pi*b*f./cp;      % non-dimensional wave number, P-waves 
kp = kp + .0001*(kp == 0);  
 
% break P-wave wave number into two regions: kp < 2 and kp >= 2 
indc = find(kp < 2.);       
kpd =kp(indc); 
ind2 =find(kp >= 2.); 
kpu = kp(ind2); 
% S-wave wave numbers over same ranges 
ksd =cr*kpd; 
ksu =cr*kpu; 
 
% use relatively small, fixed number of terms for kp <2 
num = 10; 
% compute scattering amplitude over kp <2 for sphere of radius b 

if strcmp(type2, 'p') 
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% use much larger number of terms for kp >= 2 
num2= 10 + round(kpu(end)); 
% compute scattering amplitude over kp >= 2 for sphere of radius b 
A2 = sca(kpu,ksu, num2, b); 
 
% combine two ranges 
Aout= [A1  A2]; 
% force zero frequency scattering amplitude to zero exactly 
Aout(1) =0; 
 
% subfunction for calculating scattering amplitude with a given number 
% of terms in the series. Generally, ten terms should be adequate 
% for kp < 2 and a number of terms that is proportional to the max  
% kp-value should be adequate for large kp values. However, if the 
% max kp-value is very large, the number of terms used here based on this 
% value may be too large for the values just above kp =2, resulting in the 
% round-offs that cause the function to return NaNs at those lower 
% frequencies. This function has been tested up to kp = 90 without problems 
% of this sort. 
 
function A = sca(xp,xs, numb, b) 
An = zeros(size(xp));       % initialize array of zeros 
 
% First compute the normalized scattering amplitude A/b. 
 
% xp = P- wave number, xs = S- wave number, k is an integer. 
% Uses spherical Bessel functions and spherical Hankel functions 
% of order k defined by sphJ(k,x), sphH(k, x) 
 
for k = 0:numb  
e3 = (2.*k+1).*((k.^2 - k - xs.^2./2).*sphJ(k, xp) +2.*xp.*sphJ(k+1,xp)); 
e4 = (2.*k+1).*((k-1).*sphJ(k, xp) - xp.*sphJ(k+1, xp)); 
e32 = -k.*(k+1).*((k-1).*sphH(k, xs) - xs.*sphH(k+1, xs)); 
e31 = (k.^2 - k - xs.^2./2).*sphH(k, xp) + 2.*xp.*sphH(k+1, xp); 
e41 = (k - 1).*sphH(k, xp) -xp.*sphH(k+1, xp); 
e42 = -(k.^2 -1 - xs.^2./2).*sphH(k, xs) - xs.*sphH(k+1, xs); 
if k == 0 
    c = e3./e31; 
else 
c = (e3.*e42 - e4.*e32)./(e31.*e42 - e41.*e32); 
end 
An = An + ((-1.)^k)*c;  
end  
% Now, put the b factor back, insert i/kp term which multiplies entire result 

A1 =sca(kpd, ksd, num, b); 
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Code Listing G.8. A function that uses the separation of variables method to 
calculate the far field pulse-echo S-wave scattering of a spherical void. 
 
 
function Aout = A_void_Ssep(setup)  
% A_VOID_SSEP  computes the far field SV-wave scattering amplitude, Aout , 
% for a spherical void of radius b in an elastic solid (pulse echo)  
% using the method of separation of variables. the only input parameter is 
% the setup structure. The complex scattering amplitude, Aout, 
% is returned (in mm).  
% The calling sequence is:  
% Aout = A_void_Ssep(setup) 
 
% get input parameters 
f=setup.f; 
b =setup.flaw.b; 
cp = setup.matl.cp2; 
cs =setup.matl.cs2; 
 
cr = cp/cs;                        % ratio of P- and S- wave speeds 
ks = 2000*pi*b*f./cs;      % non-dimensional wave number, S-waves 
ks = ks + .001*(ks == 0);  
 
% break S-wave wave number into two regions: ks < 5 and ks >= 5 
indc = find(ks < 5);       
ksd =ks(indc); 
ind2 =find(ks >= 5); 
ksu = ks(ind2); 
% P-wave wave numbers over same ranges 
kpd =ksd./cr; 
kpu =ksu./cr; 
 
% use relatively small, fixed number of terms for ks <5 
num = 10; 
% compute scattering amplitude over ks < 5 for sphere of radius b 
A1 =sca(kpd, ksd, num, b); 
 
% use much larger number of terms for ks >= 5 
num2= 10 + round(ksu(end)); 
% compute scattering amplitude over ks >= 5 for sphere of radius b 
A2 = sca(kpu,ksu, num2, b); 

A = i*b*An./xp; 
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Aout= [A1  A2]; 
% force zero frequency scattering amplitude to zero exactly 
Aout(1) =0; 
 
% subfunction for calculating scattering amplitude with a given number 
% of terms in the series. Generally, ten terms should be adequate 
% for ks < 5 and a number of terms that is proportional to the max  
% ks-value should be adequate for large ks values. However, if the 
% max ks-value is very large, the number of terms used here based on this 
% value may be too large for the values just above ks=5, resulting in the 
% round-offs that cause the function to return NaNs at those lower 
% frequencies. this function has been tested up to ks = 50 without problems 
% of this sort. 
 
function A = sca(xp,xs, numb, b) 
An = zeros(size(xp));       % initialize array of zeros 
 
% First compute the normalized scattering amplitude A/b. 
 
% xp = P- wave number, xs = S- wave number, k is an integer. 
% Uses spherical Bessel functions and spherical Hankel functions 
% of order k defined by sphJ(k,x), sphH(k, x) 
 
for k = 1:numb  
j12 = k.*(k+1).*((k-1).*sphJ(k, xs)-xs.*sphJ(k+1,xs)); 
h12 = k.*(k+1).*((k-1).*sphH(k, xs) -xs.*sphH(k+1,xs)); 
h13 =((k.^2-k-xs.^2./2).*sphH(k,xp) +2.*xp.*sphH(k+1, xp)); 
j41 =((k-1).*sphJ(k, xs) -xs.*sphJ(k+1, xs))./2; 
h41 = ((k-1).*sphH(k, xs) -xs.*sphH(k+1, xs))./2; 
j42 = (k.^2 -1 -xs.^2./2).*sphJ(k, xs) + xs.*sphJ(k+1, xs); 
h42 =((k.^2 -1 -xs.^2./2).*sphH(k, xs) + xs.*sphH(k+1, xs)); 
h43 = ((k-1).*sphH(k, xp) - xp.*sphH(k+1, xp)); 
 
c = (h13.*j42 -j12.*h43 )./(h13.*h42 -h12.*h43) -j41./h41; 
 
An = An + (-1)^k.*((2.*k+1)./2).*c./(-i.*xs);  
end  
 
% Now, put the b factor back 
A = b*An; 

% combine two ranges 
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Code Listing G.9. A function that uses the separation of variables method to 
calculate the normalized 3-D far field pulse-echo P-wave scattering amplitude of a 
cylindrical void, ( )3 ; /p p

D i iA L−e e . 
 
 
function Ascatt = A_SDH_Psep(setup) 
% A_SDH_PSEP computes the separation of variables solution 
% for the 3-D non-dimensional pulse-echo P-wave  
% scattering amplitude, Ascatt, for a side-drilled hole  
% of radius b (in mm). 
% The function returns the scattering amplitude, A, divided 
% by the length, L, i.e. Ascatt = A/L so that a value for L 
% does not need to be specified. The only input to the function 
% is the setup structure. The calling sequence is: 
% Ascatt =A_SDH_Psep(setup); 
 
% get setup parameters 
f =setup.f; 
b = setup.flaw.b; 
cp =setup.matl.cp2; 
cs = setup.matl.cs2; 
% 
cr = cp/cs;                 % ratio of P- and S- wave speeds 
kp = 2000*pi*b*f./cp;      % non-dimensional wave number, P-waves 
kp = kp + .0001*(kp == 0);  
 
% break P-wave wave number into two regions: kp < 2 and kp >= 2 
indc = find(kp < 2.);       
kpd =kp(indc); 
ind2 =find(kp >= 2.); 
kpu = kp(ind2); 
% S-wave wave numbers over same ranges 
ksd =cr*kpd; 
ksu =cr*kpu; 
 
% use relatively small, fixed number of terms for kp <2 
num = 10; 
% compute normalized scattering amplitude over kp <2 for sphere of radius b 
A1 =sca(kpd, ksd, num); 
 
% use much larger number of terms for kp >= 2 
num2= 10 + round(kpu(end)); 
% compute normalized scattering amplitude over kp >= 2 for sphere of radius b 
A2 = sca(kpu,ksu, num2); 
% combine two ranges 
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Ascatt= [A1  A2]; 
% force zero frequency normalized scattering amplitude to zero exactly 
Ascatt(1) =0; 
 
% subfunction for calculating normalized scattering amplitude for a  
% side- drilled hole with a given number of terms in the series.  
% Generally, ten terms should be adequate 
% for kp < 2 and a number of terms that is proportional to the max  
% kp-value should be adequate for large kp values. However, if the 
% max kp-value is very large, the number of terms used here based on this 
% value may be too large for the values just above kp =2, resulting in the 
% round-offs that cause the function to return NaNs at those lower 
% frequencies. This function has been tested up to kp = 90 without problems 
% of this sort. 
% This function uses Hankel functions of type m, order n given by the MATLAB  
% function besselh(n, m, x) 
 
function A = sca(kp,ks, numb) 
% initialize arrays 
An = zeros(size(kp));       
Ckp1 =zeros(size(kp)); 
Ckp2 =zeros(size(kp)); 
Cks1 =zeros(size(kp)); 
Dkp1 =zeros(size(kp)); 
Dkp2 =zeros(size(kp)); 
Dks1 =zeros(size(kp)); 
c =zeros(size(kp)); 
 
%calculate the series 
for n = 0:numb  
 
Ckp1 =(n^2 +n -(ks.^2/2)).*besselh(n, 1,kp) -((2*n).*besselh(n,1,kp)... 
 -kp.*besselh(n+1,1,kp)); 
Ckp2 =(n^2 +n -(ks.^2/2)).*besselh(n, 2,kp) -((2*n).*besselh(n,2,kp)... 
 -kp.*besselh(n+1,2,kp)); 
Cks1 =(n^2 +n -(ks.^2/2)).*besselh(n, 1,ks) -((2*n).*besselh(n,1,ks)... 
 -ks.*besselh(n+1,1,ks)); 
Dkp1 = (n^2 +n).*besselh(n,1,kp) -n*((2*n).*besselh(n,1,kp)... 
 -kp.*besselh(n+1,1,kp)); 
Dkp2 = (n^2 +n).*besselh(n,2,kp) -n*((2*n).*besselh(n,2,kp)... 
 -kp.*besselh(n+1,2,kp)); 
Dks1 = (n^2 +n).*besselh(n,1,ks) -n*((2*n).*besselh(n,1,ks).... 
 -ks.*besselh(n+1,1,ks)); 
 
if n == 0 
    c = 1+ Ckp2./Ckp1; 
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else 
c = 2*(1+(Ckp2.*Cks1 -Dkp2.*Dks1)./(Ckp1.*Cks1 - Dkp1.*Dks1)); 
end 
An = An + ((-1.)^n)*c;  
end  
% Now, put the external factor in 
A = (i/(2*pi))*An; 
 
 
 

calculate the normalized 3-D far field pulse-echo SV-wave scattering amplitude of 
a cylindrical void, ( )3 ; /s s

D i iA L−e e . 
 
 
function Ascatt = A_SDH_Ssep(setup) 
% A_SDH_SSEP computes the separation of variables solution 
% for the 3-D non-dimensional pulse-echo SV-wave  
% scattering amplitude, Ascatt, for a side-drilled hole  
% of radius b (in mm). 
% The function returns the scattering amplitude, A, divided 
% by the length, L, i.e. Ascatt = A/L so that a value for L 
% does not need to be specified.The only input to the function 
% is the setup structure. The calling sequence is: 
% Ascatt =A_SDH_Ssep(setup); 
%  
 
% get input parameters 
f=setup.f; 
b =setup.flaw.b; 
cp = setup.matl.cp2; 
cs =setup.matl.cs2; 
 
cr = cp/cs;                 % ratio of P- and S- wave speeds 
ks = 2000*pi*b*f./cs;      % non-dimensional wave number, S-waves 
ks = ks + .001*(ks == 0);  
 
% break S-wave wave number into two regions: ks < 5 and ks >= 5 
indc = find(ks < 5);       
ksd =ks(indc); 
ind2 =find(ks >= 5); 
ksu = ks(ind2); 
% P-wave wave numbers over same ranges 
kpd =ksd./cr; 
kpu =ksu./cr; 

Code Listing G.10. A function that uses the separation of variables method to 
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% use relatively small, fixed number of terms for ks <5 
num = 10; 
% compute scattering amplitude over ks < 5 for sphere of radius b 
A1 =sca(kpd, ksd, num); 
 
% use much larger number of terms for ks >= 5 
num2= 10 + round(ksu(end)); 
% compute scattering amplitude over ks >= 5 for sphere of radius b 
A2 = sca(kpu,ksu, num2); 
 
% combine two ranges 
Ascatt= [A1  A2]; 
% force zero frequency scattering amplitude to zero exactly 
Ascatt(1) =0; 
 
% subfunction for calculating normalized scattering amplitude for a  
% side-drilled hole with a given number of terms in the series.  
% Generally, ten terms should be adequate 
% for ks < 5 and a number of terms that is proportional to the max  
% ks-value should be adequate for large ks values. However, if the 
% max ks-value is very large, the number of terms used here based on this 
% value may be too large for the values just above ks = 5, resulting in the 
% round-offs that cause the function to return NaNs at those lower 
% frequencies. This function has been tested up to ks = 50 without 
% problems of this sort. 
% This function uses Hankel functions of type m, order n defined by the 
% MATLAB function besselh(n, m, x) 
 
 
function A = sca(kp, ks, numb) 
 
% initialize arrays 
An = zeros(size(kp));       
Cnp1 =zeros(size(kp)); 
Cns1 =zeros(size(kp)); 
Cns2 =zeros(size(kp)); 
Dnp1 =zeros(size(kp)); 
Dnp2 =zeros(size(kp)); 
Dns1 =zeros(size(kp)); 
c =zeros(size(kp)); 
 
% Calculate series 
for n = 0:numb  
 
Cnp1 =(n^2 +n -(ks.^2/2)).*besselh(n, 1,kp) -((2*n).*besselh(n,1,kp)... 
 -kp.*besselh(n+1,1,kp)); 
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Cns2 =(n^2 +n -(ks.^2/2)).*besselh(n, 2,ks) -((2*n).*besselh(n,2,ks)... 
 -ks.*besselh(n+1,2,ks)); 
Cns1 =(n^2 +n -(ks.^2/2)).*besselh(n, 1,ks) -((2*n).*besselh(n,1,ks)... 
 -ks.*besselh(n+1,1,ks)); 
Dnp1 = (n^2 +n).*besselh(n,1,kp) -n*((2*n).*besselh(n,1,kp)... 
 -kp.*besselh(n+1,1,kp)); 
Dns2 = (n^2 +n).*besselh(n,2,ks) -n*((2*n).*besselh(n,2,ks)... 
 -ks.*besselh(n+1,2,ks)); 
Dns1 = (n^2 +n).*besselh(n,1,ks) -n*((2*n).*besselh(n,1,ks)... 
 -ks.*besselh(n+1,1,ks)); 
 
if n == 0 
    c = 1+ Cns2./Cns1; 
else 
c = 2*(1+(Cns2.*Cnp1 -Dns2.*Dnp1)./(Cnp1.*Cns1 - Dnp1.*Dns1)); 
end 
An = An + ((-1.)^n)*c;  
end  
% Now, put the external factor in 
A = (i/(2*pi))*An; 
 
 
 
Code Listing G.11. A function that models the open-circuit voltage output versus 
time of a pulser. 
 
 
function V = pulserVT(V0, t0, a1, a2, t) 
% PULSERVT(V0, t0, a1, a2, t) models the open-circuit voltage of 
% a spike or square wave pulser using the four parameters V0, t0, 
% a1, and a2. The parameter V0 controls the amplitude and the other 
% parameters control the rise and fall characteristics of the pulse. 
% The input parameter t is a set of sampled times. 
t = t + eps*( t ==0); 
Vinf = V0/(1-exp(-a1*t0)); 
V = -Vinf*(1- exp(-a1*t)).*(t <= t0) -V0*exp(-a2*(t -t0)).*(t > t0); 
 
 
 
Code Listing G.12. A function that computes the Fresnel integral. 
 
 
function y=fresnel_int(x) 
%FRESNEL_INT(X) computes the Fresnel integral defined as the integral 
%from t = 0 to t = x of the function exp(i*pi*t^2/2). Uses the approximate 
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%expressions given by Abramowitz and Stegun, Handbook of Mathematical  
%Functions, Dover Publications, 1965, pp. 301-302. 
%The calling sequence is: y = fresnel_int(x) 
 
%separate arguments into positive and negative values, change sign  
%of the negative values 
xn =-x(x<0);       
xp=x(x >=0); 
 
%compute cosine and sine integrals of the negative values, using the 
%oddness property of the cosine and sign integrals 
[cn,sn] =cs_int(xn); 
cn= -cn; 
sn = -sn; 
 
%compute cosine and sine integrals of the positive values 
 
[cp, sp]=cs_int(xp); 
 
%combine cosine and sine integrals for positive and negative 
%values and return the complex Fresnel integral 
ct =[cn cp]; 
st =[sn sp]; 
y=ct+i*st; 
 
%CS_INT(XI) calculates approximations of the cosine and sine integrals 
%for positive values of xi only(see Abramowitz and Segun reference above)  
function [c, s]=cs_int(xi) 
f =(1+0.926.*xi)./(2+1.792.*xi +3.104.*xi.^2);      % f function (see ref.) 
g=1./(2+4.142.*xi+3.492.*xi.^2+6.67.*xi.^3);        % g function (see ref.) 
c=0.5 +f.*sin(pi.*xi.^2./2) -g.*cos(pi.*xi.^2./2);  % cosine integral approx. 
s = 0.5 -f.*cos(pi.*xi.^2./2)-g.*sin(pi.*xi.^2./2); % sine integral approx. 
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scattering amplitude. See far-field 

scattering amplitude  

 Index 

Navier’s equations, 497 



602      Index 
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