6110气门座圈的失效分析

郑祝林 须雅萍

(无锡市球墨铸铁研究所)

气门座圈是镶在柴油机气缸盖中的重要 零件之一。它与气伐座合面的匹 配 要 求 密 封,材料必须具有很好的耐磨性和耐热性, 才能确保柴油机高负荷连续运转的可靠性。

某厂生产的6110柴油机的气门伐座就是 采用这种结构型式。先用合金铸铁棒料加工 成气门座圈,而后将气门座圈采用 过 盈 配 合,压入气缸盖中。在压入时,气门座圈需 经低温处理。他们曾发现有一批气门座圈, 经低温液氮处理后,其尺寸不仅没有缩小, 反而胀大,无法压入气缸盖中进 行 正 常 使 用。为此要求查明原因,找出解决问题的方 法,采取相应措施,确保生产正常进行,具 有一定的实际意义。

1. 6110气门座圈的化学成份和加工工 艺过程

1.1 气门座圈是采用合金铸铁,其化学成份为: $C3.1\sim3.3\%$; $Si1.8\sim2.1\%$; $Mn0.6\sim0.8\%$; $P0.2\sim0.3\%$; S<0.1%; $C70.6\sim0.8\%$; $Mo0.6\sim0.8\%$; $Ni0.9\sim1.1\%$.

1.2 气门座圈的加工工艺过程为铸造一 粗加工一热处理一磨削加工一成品一液级处

理~装配。

1.3 热处理工艺及金相组织

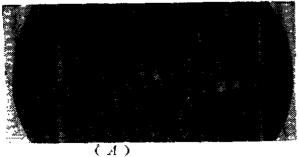
将粗加工后的气门座圈加热 至 880 ℃保 温30分钟后,淬入油中,然后在360 ℃回火。 其金相组织应为细针状回火马氏体和屈氏体 以及磷共晶体。它的 硬 度 为43~48HRC。

2. 失效气门座圈的材质分析

为了进行气门座圈材质的对比试验,我 们解剖了失效的和正常的气门座圈各一只。

2.1 化学成份的分析:

两只气门座圈的化学分析结果见表 1。


气门座圈的化学成份(%) 表 1

名称 C Si Mn P S Cr Mo Ni 正常 2.76 i.96 0.77 0.21 0:04 0.61 0.64 0.96 失效 2.72 1.94 2.65 0.22 0.028 0:61 0.66 0:89

由表中可知,这两只气门座圈的化学成份,最明显的差别是Mn的含量。失效气门座圈的Mn含量很高,它比正常的含 猛 量将近高出3.5倍左右。

2.2 金相组织

两只气门座圈的显微组织如图1所示。如图1(A)为正常使用的气门座圈组织,图1(B)为失效气门座圈的组织。

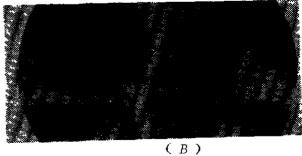


图1 气门座圈的全构组织 400%

由图中可知,它们的显微组织有明显的差别,除失效气门座圈的组织**校粗之外,其**差别主要还在于基体组织中出现了大量的淬火马氏体。这种组织在经过淬火和回火处理的气门座圈中是不应该存在的。

3. 分析与讨论

3.1 为什么在气门座圈中会出现大量淬 火马氏体组织。

我们认为气门座圈中出现的淬火马氏体组织,必定是在液氮处理时形成。因此,可以推断,气门座圈在液氮处理前,在基体组织中存在着大量的奥氏体。其主要原因是与合金铸铁中的含锰量过高有关。因为锰是强烈扩大 Y 相区,降低临界温度,形成奥氏体的元素之一;随着锰含量的增加,能使 C 曲线明显右衫,降低了临界冷却速度,增大奥氏体的稳定性和过冷程度,锰含量的提高还会影响 M s 点和 M f 点的降低。因此,随着 M s 点降低,会引起固定于室温的境介。奥氏体量的增多,其作用还随着碳含量的增加而增强见图 2。而锰和碳共同对其淬火组织的影响见图 3。

由图中可知,含碳量超过共析点时,当 锰含量在2%时,就会出现奥氏体组织,而 当锰含量更高时,就更容易稳定奥氏体。因 此当气门座圈的锰含量高达2.65%时, 泾淬 火回火后,在组织中就会形成大量的残余奥 氏体。这就是气门座圈经液氮后出现淬火马

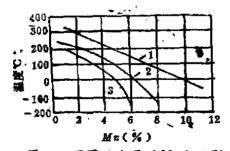


图 2 不同碳含量对M、点的影响 1 — C 0.52% 2 — C 0.80% 3 — C 1.03%

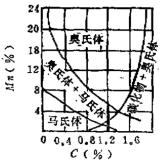


图 3 锰和碳对淬火组织的影响 氏体的原因。

3.2 关于气门座圈尺寸胀大的问题

这个问题实际上与气门座圈的组织中存 在着大量奥氏体是密切相关的。 据 资 料 指 出,在金属材料的膨胀试验中,当组织没 有发生转变时,随着温度的降低,试样长度 缩短,这就是热胀冷缩现象;但当组织发生 变化时,像奥氏体向马氏体转变时,试样就 膨胀,长度增长如图 4 所示。因此,当这批 锰含量很高的合金铸铁。其组织为大量的奥 氏体和少量回火马氏体的气门座圈, 虽经加 工至一定公盈尺寸, 但在液氮处理时, 由于 温度迅速降低, 使大量的残余奥氏体继续转 变为淬火马氏体。这一点, 在我们观察失效 的气门座圈金相组织时,得到了证实。因此 当气门座圈在组织发生转变的同时,使它的 体积也发生了膨胀,尺寸变大。这就是使气 门座圈的尺寸变大的原因。

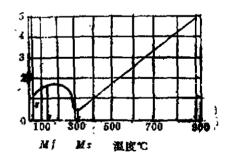


图 4 转变为马氏体的膨胀—温度曲线 (下转第49页)

得了比较明显的效果,表4是改造前后的节能和经济效益比较。

经运行检测,原来三台老系列变压器每年的电能损耗达23,43万kwh,选用新系列

变压器后, 年电能损耗 降 为 10.76 万kwh, 节电率达54.1%, 其中有功损耗减少35.8%, 无功损耗减少57.8%, 年直接经 济 效 益 达 3.1675 万元。

改造前后节能效果比较

袭 4

名育	参数	Se KVA	Sıs KVA	β ‰	ΔPo KW	ΔPk KW	ΔP KW	ΔQo KVAR	ΔQk KVAR	ΔQ KVAR	W KWh/年	F5 元/年
	原变压器	SJ560	418	74	2.5	9.4	7.76	33.6	25.2	47.6	87817	21954
焦焼	新变压器	S7630	418	66.3	1.30	8.10	4.84	12.6	28.35	25.1	31680	7920
	馬变压器			61.2	3.35	11.5	7.66	45.0	33.75	57.60	99110	24778
煤	新变压器	S7630	469	72.8	1.30	8.1	5.59	12.60	28,35	17.63	54198	13349
	原变压器	SJ240	178	74	1. G	F . 1	4.4	10.8	10.8	22.70	47344	11836
供电	新变压器	SL7-3	15 178	56• ^{ri}	e.76	4.8	2.29	7.25	12.6	11.27	21677	5419

5. 结论:在目前工厂企业更新淘老系列变压器的技术改造中,应用经济技术综合比较法,进行计算选用适当容量的87或8L7新系列变压器,可以克服单纯估算的盲目

性,具有较强的科学性,使更新后的低损耗 变压器以合理的投资在运行中能取得最佳的 节能效果。

(上接第34页)

4. 结论及其对策

通过以上的分析,可以得出下列结论及 其对策。

- 4.1 气门座圈失效主要是由于台金铸铁的锰含量过高,促使其基体组织中存在大量的残余聚氏体。在以后的液氮处理中,发生奥氏体向马氏体的组织转变,因此在气门座圈的组织中出现了淬火马氏体。
- 4.2 在奥氏体向马氏体转变的同时,气 门座圈的体积也发生膨胀,这就是气门座圈

尺寸变大的原因。

- 4.3 失效的气门座圈先进行低温回火, 使淬火马氏体变为回火马氏体,稳定组织, 消除应力,加工至图纸规定尺寸,再经液氮 处理,重新压入气缸盖中使用。
- 4.4 在气门座圈的生产中必须加强对炉料和原材料的管理制度,严格合金铸铁成份的控制,加强化学分析和金相检验,以免出现类似现象。