马上注册,结交更多热工坛友,更多精彩内容等着您!
您需要 登录 才可以下载或查看,没有帐号?免费注册
x
3.1 增碳率的控制和增碳剂的使用
对于中频炉熔炼灰铁,许多人都以为只要炉前控制住铁水的化学成分和温度,就能熔炼出优质 铁水,但事实并非如此简单。中频炉熔炼灰铁的重中之重是控制增碳剂的核心作用,核心技术是铁 水增碳。增碳率越高,铁水的冶金性能越好。这里所说的增碳率,是铁水中以增碳剂形式加入的碳, 而不是炉料中带入的碳。生产实践表明,在炉料配比中生铁比例高,白口倾向大;增碳剂比例增大, 白口倾向减小。这就要求在配料中要多用廉价的废钢和回炉料,少用或不用新生铁,这种采用废钢 增碳工艺的铁水中存在大量细小的弥散分布的非均质晶核,降低了铁水的过冷度,促使了以 A 型石 墨为主的石墨组织的形成。同时,生铁用量的减少,也减小了生铁粗大石墨的不良遗传作用,而且 灰铁的性能也随着废钢用量的增加而提高。在实际生产中就曾发现,在废钢用量约为 30%的情况下, 同样用废钢、回炉料、新生铁做炉料,在化学成分基本相同时,中频炉熔炼的灰铁比冲天炉熔炼的 性能低,强化孕育效果也不明显,这就是废钢用量少、增碳率低的缘故。由此足见增碳对于保证灰 铁的熔炼质量、改善铸铁的组织与性能的重要性。 灰铁的性能是由基体组织和石墨的形态、大小、数量及分布决定的,改变石墨形态是改变铸铁 性能的重要途径。相比而言,基体组织较容易控制,它主要取决于铁水的化学成分和冷却速度。但 石墨形态却不容易控制,它要求铁水的石墨化程度要好。而奇怪的是只有新增碳才参与石墨化,炉 料中的原始碳并不参与石墨化。如果不用增碳剂,熔炼出的铁水虽然化学成分合格,温度也合适, 孕育也合理,但铁水却表现不佳:看似温度较高,流动性却不太好,缩孔、缩松倾向大,易吸气, 易产生白口,截面敏感性大,铁水夹杂物多。这些都是铁水增碳率和石墨化程度低造成的。 碳在原铁水中的存在形式主要为细小的石墨和碳原子,从细化石墨的角度考虑,原铁水中不希 望有过多的碳原子,其势必会减少石墨的核心数,并且碳原子在冷却过程中更易形成渗碳体,而细 小的石墨可以直接作为非均质形核核心。细化石墨、增加核心是实现铸铁高性能的关键,增大增碳 剂用量可以增加形核核心数量,进而为细化石墨打下坚实的基础。因此,在实际生产中应强调增碳 剂的使用和增碳效果:①增碳剂的吸收率与其 C 含量直接相关,C 含量越高,则吸收率越高。②增 碳剂的粒度是影响其溶入铁水的主要因素,实践证明,增碳剂的粒度应以 1~4mm 为好,有微粉和粗 粒增碳效果都不好。③硅对增碳效果有较大影响,高硅铁水增碳性差,增碳速度慢,故硅铁应在增 碳到位后加入,要遵循先增碳后增硅的原则。④硫能阻碍碳的吸收,高硫铁水比低硫铁水的增碳速 度迟缓很多。⑤石墨增碳剂能提高铁水的形核能力,吸收率也比非石墨增碳剂高 10%以上,故应选 用低氮石墨增碳剂。⑥增碳剂的使用方法推荐使用随炉装入法,即先在炉底加入一定量的小块回炉 料和废钢,然后把增碳剂按配料量需要全部加入,上面再压一层小块废钢和生铁,之后再边熔化边 加炉料。此法简便易行,生产效率高,吸收率可达 90%。如果增碳剂的加入量很大,可以分两批加 入,先加 60%~70%于炉底废钢垫层上,剩下的在继续加废钢的过程中加入。在铁水温度 1400~1430 ℃时也可加增碳剂,目标是要把铁水 C 含量增至达到牌号要求上限。⑦增碳剂的加入时间不可过迟, 在熔炼后期加入增碳剂有两方面不利:其一,增碳剂易烧损,碳吸收率很低。其二,后期加入的增 碳剂需要额外的熔化、吸收时间,迟缓了化学成分调整和升温时间,降低了生产效率,增加了电耗, 而且有可能带来由于过度升温而造成的危害。⑧铁水的搅拌可以促进增碳,特别是附着在炉壁的石 墨团,如果不用过度升温和一定时间的铁水保温,不易溶于铁水,中频炉较强的电磁搅拌对增碳有利。 3.2 温度的控制 灰铁熔化期的温度不宜过高,一般控制在 1400℃以下。如果熔化温度过高,合金的烧损或还原会影响熔炼后期的成分调整。在炉料熔清炉温达 1460℃后,取样快速检验,然后扒净渣,再加入铁 合金等剩余的炉料。扒渣温度对铁水质量的影响很大,它与稳定的化学成分、孕育效果密切相关, 并直接影响到出炉温度的控制。扒渣温度过高,会加剧铁水石墨晶核的烧损和硅的还原、偏高(酸 性炉衬中),并产生排碳作用,影响按稳定系结晶;若扒渣温度过低,铁水长时间裸露,C、Si 烧损 严重,需再次调整成分,延长了冶炼时间,并使铁水过热,增大过冷度,易使成分失控,破坏正常 结晶。 出炉温度的控制须保证孕育处理和浇注的最佳温度,一般应根据实际情况控制出炉温度为 1460~1500℃,过热温度可控制在 1510~1530℃,并静置 5~8min。在 1500~1550℃范围内,提高 铁水的过热温度,延长高温静置时间,会细化石墨和基体组织,提高铸铁的强度,有利于孕育处理, 消除气孔、夹杂缺陷和炉料遗传性给铸铁的组织和性能带来的不良影响。如果静置温度过低、时间 过短,增碳剂不能完全溶入铁水中,也不利于铁水的杂质上浮被挑渣除去。但过热温度过高或高温 静置时间过长,反而会恶化石墨形态、粗化基体、增大过冷度、加大白口倾向,使铁水已有的异质 核心消失,氧化严重,降低铸铁的性能,并影响出炉温度的控制。如果出炉温度过高,尽管 C、Si 含量适中,浇注三角试块的白口深度会过大或中心部位出现麻口。如果出现这种情况,需调低中频 功率,向炉内补加生铁降温增碳。 浇注温度也不宜高,否则会使铸件产生严重的粘砂缺陷,有的甚至难以清理而使铸件报废,而 且浇注温度高,过冷度大,不利于 A 型石墨的形成。浇注温度如果过低,则不利于除气,还会造成 铸件偏硬和出现冷隔、轮廓不清等问题。适当稍低的浇注温度,铁水液态收缩量较小,有助于减少 缩孔,获得致密的铸件。不同壁厚,不同重量的铸件有着不同的理想浇注温度,在日常生产中一般 控制浇注温度在 1450~1380℃。对于厚大铸件必须要确保“高温出炉,低温快浇”。为了缩短等待 铁水温度降至浇注温度的时间,防止孕育衰退,可以通过倒包加静置的方法使铁水快速降温,以防 止发生缩松,提高生产效率。 3.3 硫和氮的控制 中频炉熔炼铸铁没有增硫源,铁水的 S 含量较低,这一点对于生产球铁有很大的优势。但对于 灰铁,低硫而较高的锰会增大铸造应力,使裂纹出现几率大大增加,而且铁水中适量的硫可以改善 孕育效果。过去冲天炉生产灰铁,由于焦炭会对铁水增硫,不用担心硫低。而中频炉生产灰铁,不 但不增硫,而且还因大量使用废钢,使 S 含量更低了(约 0.04%左右)。灰铁中 w(S)≤0.06%,将 会导致石墨形态不好、难以孕育、缩松和白口倾向大。在以往的生产中就发现,凡是有裂纹和白口 缺陷的铸件,其石墨形态大都以 D、E 型石墨为主。电炉铁水要得到正常的石墨形态,必须要有合 适的 S 含量,硫及硫化物含量低,晶核数量会减少,石墨形核能力降低,白口增大,A 型石墨减少, D、E 型过冷石墨和铁素体增加,晶粒粗大,强度降低。而且随着高温铁水保温时间的延长,过冷度 继续增大,越是高牌号灰铁,保温温度和时间对过冷度的影响越显著。有资料指出,铁水含量低, 共晶团数少,随着 S 含量的增加,共晶团数急剧增加,而共晶团数目越多,尺寸越细小,铸铁的力 学性能越好。因此,中频炉熔炼灰铁一般要把 S 含量提高到 0.06%~0.1%之间,以充分发挥硫的 有益作用,改善孕育效果,使铁水的形核数量增加,铸件的金相组织以 A 型石墨为主,基体组织的 珠光体含量增加,从而改善铸铁的强度和切削加工性能。具体做法是,在熔炼后期调整成分后加 FeS 增硫,也有采用焦炭作增碳剂,在增碳的同时,也把 S 含量增至大于 0.06%。但 S 含量也不可过高, 因硫是阻碍石墨化元素,过高会增加白口,而且在 S 含量高时,随着 Mn 含量的增加,生成的 MnS 充分起到了异质形核作用,为良好的孕育创造了条件。但当 Mn 含量大于 1%后,生成了过多的 MnS 偏聚在晶界,弱化了晶界,甚至产生夹渣,降低铸铁的强度。从减少 MnS 夹渣的角度,应控制 S 含 量小于 0.1%,这样允许存在的锰量高一些,对提高灰铁的性能有利。 由于中频炉熔炼灰铁大量使用废钢,并随着废钢配比的增加,增碳剂的用量也随之增大,加之 增碳剂含氮较高,所以中频炉铁水的 N 含量较高。当铁水中 N 含量大于 100×10-6时,铸件易出现龟 裂、缩松和裂隙状皮下气孔缺陷。控制铁水中 N 含量的最有效的方法是将铁水在高温下保温,在保 温时随时间的延长,N 含量将逐渐下降。但高温铁水长时间保温会增大过冷度和白口倾向,所以日 常生产中应选用 N 含量低的石墨增碳剂。在必要情况下,可在涂料中加入 10%的氧化铁粉,以消除 高氮的影响。但灰铁中的氮和硫一样属于限制元素,铁水中微量的氮能使灰铁的晶粒和共晶团细化, 基体中珠光体量增加,力学性能提高,对改善灰铁的石墨形态,促进基体组织珠光体化能发挥积极 作用,氮化合物也能作为晶核,为石墨形核创造成长条件。在实际生产中,一般应控制 N 含量在 0.008 %以下。 3.4 强化孕育处理 孕育处理时,加入大量人工结晶核心,迫使铸铁在受控的条件下进行共晶凝固,其目的是促进 石墨化,降低白口倾向和断面敏感性,控制石墨形态,减少过冷石墨和共生铁素体,适当增加共晶 团数,促进形成珠光体,从而改善铸铁的强度和机加工性能。实际生产中的强化孕育处理,是选择 合适的孕育剂和孕育方法,对 CE 在 3.9%~4.1%之间,温度在 1480℃左右的高温铁水用高效孕育 剂强化孕育,以得到铸造性能好,力学性能高的灰铁铸件,并非是指加大孕育量。不同的孕育剂有 不同的特点,必须根据孕育剂的特性,结合自身生产条件合理选择孕育剂和孕育方法。通过试验选 定并确立最适合本企业特点的处理方法后,应严格控制工艺过程,以确保铸件质量的稳定。 除随流加入孕育剂,控制加入量和随流时间外,防止孕育衰退、提高孕育效果还要注意以下方 面: ①因熔炼温度和保温时间的限制,生铁中粗大的石墨片不可能完全消溶,未溶尽的粗大石墨性 状会遗传给铸铁,大大抵消孕育的作用,所以在实际生产中应尽量减少生铁的用量,以消除生铁的 遗传性,改善孕育效果,提高灰铁的性能。 ②应选用含钙、铝、有较多难熔非均质形核核心的孕育 剂,并控制孕育剂有合适的粒度,因孕育剂的粒度对孕育效果的影响非常大。粒度过细,易被氧化 进入熔渣而失去作用;粒度太大,孕育剂熔解不尽,不但不能充分发挥孕育作用,而且还会造成偏 析、硬点、过冷石墨等缺陷。孕育剂的粒度一般控制在 3~8mm(1 吨以下的铁水量),孕育量控制 在约为铁水重量的 0.3%~0.5%。过大的孕育量会使铸铁的收缩和夹渣倾向增大。 ③多次孕育能有 效防止孕育衰退,改善铸铁内部石墨分布均匀程度,降低铁水过冷倾向,使 A 型石墨占有率高,长 度适中,并促使非自发晶核数量增多,细化晶粒,强化基体,提高铸铁的强度和性能。例如二次孕 育选用具有很强促进石墨化能力的硅钡长效孕育剂,可改善薄壁铸件中石墨的形态和分布状况,增 加共晶团,促进形成 A 型石墨,消除过冷石墨,抑制产生游离渗碳体,且可减缓孕育衰退。 ④铁水 温度对孕育的影响,是在一定范围内提高铁水的过热温度,并保持适当的时间,可使铁水中残存的 未溶石墨完全溶入铁水,消除遗传因素影响,充分发挥孕育剂的作用,提高铁水的受孕能力。过热 温度以提高到约 1520℃为宜,孕育处理温度控制在 1460~1420℃较佳。 3.5 工艺技术的调整与改进 (1)中频炉熔炼灰铁的工艺操作顺序:小块回炉料和废钢+石墨增碳剂+废钢和新生铁+回炉 料+铁合金+合适的孕育。为了改善铁水在高温长时间保温带来的不良影响,基于中频炉温度易于 提高、可快速熔炼的优势,制定“快熔快出”的工艺操作方法,尽量缩短熔化时间,加快熔化速度, 使铁水在炉内经化学成分调整、升温后尽快出炉,并加快浇注速度,力争 5min 左右完成浇注,最 大限度地缩短铁水在炉内和包内的保温时间。 (2)夹渣对铸件质量的影响很大,轻则细小夹渣割裂基体,降低抗拉强度,严重的夹渣缺陷能 直接导致铸件报废。存在较多夹渣的炉料熔化后,附着于炉壁和存在于铁水中的夹渣受电炉电磁搅 拌和铁水浮力作用而陆续上浮,在熔炼后期需频繁、高效地挑渣,特别是高温静置时杂质上浮,应 及时挑渣,直至铁水表面干净,无新增浮渣,这对去除夹渣、消除渣孔缺陷、减少夹渣对基体的破 坏作用非常大。 (3)因中频炉熔炼灰铁使用了大量废钢和回炉铁,一方面会促成铸铁枝晶石墨的产生和白口倾 向的增大、硬度升高,加工性能变差。因而应比冲天炉铁水更加注重孕育,以促进石墨化,细化共 晶团,改变石墨形态,减少白口倾向,使白口或麻口组织变为细珠光体组织,D、E 型石墨变为均匀 分布的 A 型石墨,提高铸件不同壁厚处组织的均匀性,达到提高铸铁性能的目的。另一方面,废钢 用量的增大,使铁水 S 含量变低,在 w(S)≤0.06%时,易导致孕育困难,一般用 FeSi75 孕育处理 作用不明显,应采取增硫措施。 (4)薄壁铸件的白口缺陷严重,机加工困难,废品率高。解决这一突出问题首先要杜绝使用合 金钢废钢,适当提高 CE,并控制处理前铁水的 Si 含量在 1.6%以上,S 含量大于 0.06%,加大孕 育量至 0.5%,使铁水形核数量增加,石墨形核能力提高,促进 A 型石墨的形成,抑制 D、E 型石墨 的产生,基体组织中珠光体量增加,铸铁的过冷度和白口倾向减小,强度和切削加工性能改善。合 理地控制灰铁的微观组织是改善灰铁加工性能的关键所在,在必要情况下,可在出铁前向包中加入 2%的干净无锈小块生铁,有效增加石墨质点,消除白口。 4.关于提高灰铁铸件质量和性能的一点看法 业内人士都知道:化学成分基本相同、金相分析基本一致的国产铸件与进口铸件的使用性能和 光洁度相差很大;相同碳当量的进口铸件较国产铸件高 1~2 个牌号;硬度高于国产铸件的进口铸 件,切削加工性能反而优于国产铸件。造成这些现象的原因是进口铸件的材质纯净度和碳当量高, 夹杂物和游离碳化物少,组织均匀性好。 铸铁件的内在质量、外观质量以及是否会形成铸造缺陷与铁水的各方面因素密切相关,高品质 的铁水是获得优质铸件的最基本最重要的先决条件。而铁水品质又由铁水温度、化学成分、纯净度 这些因素所决定。中频炉熔炼灰铁获得高于 1500℃高温和精确化学成分的铁水非常容易,铁水中的 每个元素对铸铁的凝固结晶、组织和性能都有一定的影响和作用;铁水过热温度的高低直接影响到 铁水成分和纯净度,其在一定范围内提高,能使石墨细化、基体组织致密、抗拉强度提高、铸造性 能改善,铁水中的杂质也更易于上浮被清渣除去。只有铁水的纯净度,至今仍停留在高温熔炼、聚 渣剂、过滤网这些层面上。其实业内专家都明白,通过这几种措施是难以获的高洁净的铁水的,只 能使情况改善,而对于铁水的深度净化、铸造缺陷的发生机理分析及预防却少有研究,鲜见对策。 存在于铁水中的各种有害气体和非金属夹杂物,在铁水凝固后留存于铸件中,造成种种铸造缺陷, 影响了铸件的使用性能;由非金属夹杂物形成的硬质质点,导致铸件切削加工困难;而铁水中含有 的杂质有害元素,更是直接影响了铸件的组织和性能。正是这些因素造成了国产铸件的综合质量长 期低于进口铸件。因此,我们应大力提高铁水的冶金质量,努力以获取有害元素和气体含量低、夹 杂物少的高洁净铁水为目的,在目前的灰铁中频炉熔炼工艺基础上,进一步完善现代铁水净化技术 和工艺流程,确保用于浇注的铁水必须是高纯净度铁水,进而才能确保铸件的高质量和高性能。 5.结语 (1)中频炉熔炼灰铁,废钢要有一定的配比,一般应占炉料的 50%以上。应选用低氮石墨增碳 剂,并保证高增碳率,以利于获得石墨化程度好、白口和缩松倾向小的优质铁水。同时,大量使用 废钢和回炉铁,少用或不用新生铁,消除粗大石墨的遗传影响。并利用生铁与废钢的价差及夜间电 价低谷熔炼,可使生产成本大幅降低。 (2)中频炉铁水的 S 含量一般较低,应采取增硫措施把铁水 S 含量提高到 0.06%~0.1%之间, 增大形核能力,增加晶核数量和珠光体含量,改善石墨形态,并细化石墨,促使形成 A 型石墨,改 善孕育效果和切削加工性能,提高强度。 (3)通过采用废钢增碳工艺+适当提高 CE 和 Si/C 比+快熔快出的操作方法+强化孕育处理等 生产技术,控制铁水过热温度在 1510~1530℃,出炉温度在 1480~1500℃,达到减少铸造缺陷、增 强灰铁性能、提高铁水品质和铸件质量、降低废品率的目的。 (4)铁水品质是影响铸铁件质量的重要因素,没有高品质的铁水就不可能有高质量的铸件。 应在目前中频炉熔炼灰铁的工艺基础上,着力提高铁水的纯净度,进一步完善现代铁水净化技术和 工艺流程,以确保灰铁铸件的高品质和高性能。 参考文献 [1]陆文华,李隆盛,黄良余.铸造合金及其熔炼【M】.北京:机械工业出版社,2008.3 [2]童军,章舟,连炜.铸铁感应电炉熔炼及应用实例【M】.北京:化学工业出版社,2008.5 [3]邹荣剑,谢寨川.全废钢技术在铸铁生产的应用【J】铸造技术,2008(12): 1747~1748 [4]岳海,赵超云.中频炉熔炼高强度灰铸铁型石墨的控制【J】铸造设备与工艺,2013(4): 42~44 [5]沈中仁,施永德,刘党库.中频炉熔炼铁液易产生的铸造缺陷及预防对策[J]铸造技术,2012(6): 744~746 [6]殷作虎.硫对灰铸铁组织和性能的影响【J】铸造,2004,53(10): 805~809 [7]林艳茹,李艳琴.碳当量对铸铁加工性能的影响及控制【J】金属加工-热加工,2014(13): 46~48 作者简介:段平昌(1967-)男,安徽淮南人,工程师,主要从事钢铁及铸造原辅材料的分析检测、 实验室的管理和钢铁的熔炼工艺技术工作。手机13395545112 黄涛(1983-),男,安徽利辛人,工程硕士,工程师,凯盛重工有限公司质保部部长, 主要从事工程技术与企业质量管理工作。手机 13866323731 |